Modeling and optimization of non-symmetric plates
Alvarez-Vásquez, L. J. ; Viaño, J. M.
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 31 (1997), p. 733-763 / Harvested from Numdam
Publié le : 1997-01-01
@article{M2AN_1997__31_6_733_0,
     author = {Alvarez-V\'asquez, L. J. and Via\~no, J. M.},
     title = {Modeling and optimization of non-symmetric plates},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {31},
     year = {1997},
     pages = {733-763},
     mrnumber = {1485753},
     zbl = {0894.73088},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_1997__31_6_733_0}
}
Alvarez-Vásquez, L. J.; Viaño, J. M. Modeling and optimization of non-symmetric plates. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 31 (1997) pp. 733-763. http://gdmltest.u-ga.fr/item/M2AN_1997__31_6_733_0/

[1] R. Adams, 1975, Sobolev spaces, Academic Press, New York. | MR 450957 | Zbl 0314.46030

[2] L. J. Alvarez Vazquez, P. Quintela Estevez, 1992, The effect of different scalings in the modelling of nonlinearly elastic plates with rapidly varying thickness, Comp. Meth. Appl. Mech. Eng., 96, 1-24. | MR 1159590 | Zbl 0759.73032

[3] V. Barbu, T. Precupanu, 1978, Convexity and optimization in Banach spaces, Sijthoff and Noordhoff, Bucharest, 1978. | MR 860772 | Zbl 0379.49010

[4] D. Blanchard, 1981, Justification de modèles de plaques correspondant à différentes conditions aux limites, Thesis, Univ. Pierre et Marie Curie, Paris.

[5] D. Blanchard, P. G. Ciarlet, 1983, A remark on the von Karman Equations, Comp. Meth. Appl. Mech. Eng., 37, 79-92. | MR 699016 | Zbl 0486.73051

[6] D. Blanchard, G. A. Francfort, 1987, Asymptotic thermoelastic behavior of flat plates, Quart. Appl. Math., 45, 645-667. | MR 917015 | Zbl 0629.73007

[7] H. Brezis, 1973, Opérateurs maximaux monotones et semigroupes de contractions dans les espces de Hilbert, North-Holland. | Zbl 0252.47055

[8] D. Caillere, 1980, The effect of a thin inclusion of high rigidity in an elastic body, Math. Meth. Appl. Sci., 2, 251-270. | MR 581205 | Zbl 0446.73014

[9] E. Casas, 1982, Análisis numerico de algunos problemas de optimización estructural, Thesis, Universidad de Santiago de Compostela.

[10] E. Casas, 1990, Optimality conditions and numerical approximations for some optimal design problems, Control Cibernet, 19, 73-91. | MR 1118675 | Zbl 0731.49010

[11] J. Cea, 1971, Optimisation: Théorie et Algorithmes, Dunod, Paris. | MR 298892 | Zbl 0211.17402

[12] P. G. Clarlet, 1980, A justification of the von Karman equations, Arch. Rat. Mech. Anal., 73, 349-389. | MR 569597 | Zbl 0443.73034

[13]P.G. Ciarlet, 1988, Mathematical Elasticity, Vol. 1, North-Holland, Amsterdam. | MR 936420 | Zbl 0648.73014

[14] P. G. Ciarlet, 1990, Plates and junctions in elastic multi-structures, Masson, Paris. | MR 1071376 | Zbl 0706.73046

[15] P. G. Ciarlet, P. Destuynder, 1979, A justification of the two dimensional linear plate model, J. Mécanique, 18, 315-344. | MR 533827 | Zbl 0415.73072

[16] P. G. Ciarlet, P. Destuynder, 1979, A justification of a nonlinear model in plate theory, Comp. Meth. Appl. Mech. Eng., 17/18, 222-258. | MR 533827 | Zbl 0405.73050

[17] P. G. Clarlet, S. Kesavan, 1981, Two-dimensional approximation of three-dimensional eigenvalue problems in plate theory, Comp. Meth. Appl. Mech. Eng., 26, 145-172. | MR 626720 | Zbl 0489.73057

[18] P. G. Clarlet, H. Le Dret, 1989, Justification of the boundary conditions of a clamped plate by an asyptotic analysis, Asymptotic Analysis, 2, 257-277. | MR 1030351 | Zbl 0699.73011

[19] P.G Ciarlet, B. Miara, 1992, Justification of the two-dimensional equations of a linearly elastic shallow shell, Comm. Pure Appl. Math., 45,327-360. | MR 1151270 | Zbl 0769.73050

[20] P. G. Ciarlet, P. Paumier, 1985, Une justification des équations de Maguerre von Karman pour les coques peu profondes, C. R. Acad. Sc. Paris, 301, 857-860. | MR 822849 | Zbl 0594.73066

[21] P. G. Ciarlet, P. Rabier, 1980, Les équations de von Karman, Lecture Notes in Mathematics, vol. 826 Springer Verlag, Berlin. | MR 595326 | Zbl 0433.73019

[22] A. Cimetière, G. Geymonat, H. Le Dret, A. Raoult, Z. Tutek, 1988, Asymptotic theory and analysis for displacements and stress distribution in non linear elstic slender rods, J. Elasticity, 19, 111-161. | MR 937626 | Zbl 0653.73010

[23] D. Cioranescu, J. Saint Jean Paulin, 1988, Reinforced and honey comb structures, J. Math. Pures Appl., 65, 403-422. | MR 881689 | Zbl 0656.35031

[24] J. L. Davet, 1986, Justification de modèles de plaques non lineaires pour des lois de comportement générales, Mod. Math. Anal. Num., 20, 225-249. | Numdam | MR 852680 | Zbl 0634.73048

[25] P. Destuynder, 1980, Sur une justification des modèles de plaques et coques par les méthodes asymptotiques, Thesis, Univ. Pierre et Marie Curie.

[26] P. Destuynder, 1981, Comparaison entre les modèles tridimensionnels et bidimensionnels de plaques en élasticité, RAIRO Anal. Num., 15, 331-369. | Numdam | MR 642497 | Zbl 0479.73042

[27] P. Destuynder, 1985, A classification of thin shell theories, Acta. Appl. Math., 4, 15-63. | MR 791261 | Zbl 0531.73044

[28] P. Destuynder, 1986, Une théorie asymptotique des plaques minces en élasticité linéaire, Masson, Paris. | MR 830660 | Zbl 0627.73064

[29] G. Duvaut, J.L. Lions, 1972, Les inéquations en Mécanique et en Physique, Dunod, Paris. | MR 464857 | Zbl 0298.73001

[30] I.M.N. Figueiredo, 1989, Modèles de coques élastiques non linéaires : méthode asymptotique et existence de solution, Thesis, Univ. Pierre et Marie Curie, Paris.

[31] K. O. Friedrichs, R. F. Dressler, 1961, A boundary-layer theory for elastic plates, Comm. Pure. Appl. Math., 14, 1-33. | MR 122117 | Zbl 0096.40001

[32] A. L. Goldenveizer, 1962, Derivation of an approximated theory of bending of a plate by the method of asymptotic integration of the equations of the theory of elasticity, Plikl. Mat. Mech., 26, 668-686. | MR 170523 | Zbl 0118.41603

[33] J. Haslinger, P. Neittanmaki, 1988, Finite element approximation for optimal shape design, John Wiley, Chichester. | MR 982710 | Zbl 0713.73062

[34] E. J. Haug, J.S. Arora, 1979, Applied Optimal Design Mechanical and Strutural Systems, John Wiley, New York.

[35] I. Hlavacek, I. Bock, J. Lovisek, 1984, Optimal control of a varitional inequality with applications to structural analysis. Optimal design of a beam with unilateral supports, Appl. Math. Optim., 11, 111-143. | MR 743922 | Zbl 0553.73082

[36] I. Hlavacek, I. Bock, J. Lovisek, 1984, Optimal control of a variational unequlity with applications to structural analysis II. Local optimization of the stress in a beam III. Optimal design of an elastic plate, Appl. Math. Optim., 13, 117-136. | MR 794174 | Zbl 0582.73081

[37] R.V. Kohn, M. Vogelius, 1984, A now model for thin plates with rapidly varying thickness, Int. J. Solids Structures, 20, 333-350. | MR 739921 | Zbl 0532.73055

[38] R. V. Kohn, M Vogelius, 1985, A new model for thin plates with rapidly varying thickness. II : A convergence proof, Quart. Appl. Math., 43, 1-22. | MR 782253 | Zbl 0565.73046

[39] R. V. Kohn, M. Vogelius, 1986, A new model for thin plates with rapidly varying thickness. III: Comparison of different scalings, Quart. Appl. Math., 44, 35-48. | MR 840441 | Zbl 0605.73048

[40] P. Quintela Estevez, 1989, A new model for nonlinear elastic plates with rapidly varying thickness, Applicable Analysis, 32, 107-127. | MR 1017526 | Zbl 0683.73027

[41] P. Quintela Estevez, 1990, A new model for nonlinear elastic plates with rapidly varying thickness II: The effect of the behavior of the forces when the thickness approaches zero, Applicable Analysis, 39, 151-164. | MR 1095630 | Zbl 0687.73061

[42] A. Raoult, 1980, Contribution à l'étude des modèles d'évolution de plaques et à l'approximation d'équations d'évolution linéaires de second ordre par des méthodes multipas, Thesis, Univ. Pierre et Marie Curie, Paris.

[43] A. Raoult, 1985, Construction d'un modèle d'évolution de plaques avec terme d'inertie de rotation, Ann. Mat. Pura Appl., 139, 361-400. | MR 798182 | Zbl 0596.73033

[44] A. Raoult, 1992, Asymptotic modeling of the elastodynamics of a multistructure, Asymptotic Analysis, 6, 73-108. | MR 1188078 | Zbl 0777.73033

[45] L. Trabucho, J.M. Viano, 1996, Mathematical modelling of rods, in: (P. G. Ciarlet, J. L. Lions, eds.) Handbook of numerical analysis, Vol. IV, North-Holland, Amsterdam. | MR 1422507 | Zbl 0873.73041

[46] J.M. Viaño, 1983, Contribution à l'étude des modèles bidimensionnelles en thermoélasticité de plaques d'épaisseur non constante, Thesis, Univ. Pierre et Marie Curie, Paris.

[47] K. Yosida, 1975, Functional Analysis, Springer Verlag, Berlin.