A new constrained formulation of the Maxwell system
Depeyre, Sophie ; Issautier, Didier
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 31 (1997), p. 327-357 / Harvested from Numdam
@article{M2AN_1997__31_3_327_0,
     author = {Depeyre, Sophie and Issautier, Didier},
     title = {A new constrained formulation of the Maxwell system},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {31},
     year = {1997},
     pages = {327-357},
     mrnumber = {1451346},
     zbl = {0874.65097},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_1997__31_3_327_0}
}
Depeyre, Sophie; Issautier, Didier. A new constrained formulation of the Maxwell system. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 31 (1997) pp. 327-357. http://gdmltest.u-ga.fr/item/M2AN_1997__31_3_327_0/

[1] F. Assous, P. Degond, J. Segre, 1992, A particle-tracking method for 3D electromagnetic PIC codes on unstructured meshes, Comp. Phys. Comm., 72, pp. 105-114.

[2] R. Carpentier, A. De La Bourdonnaye, B. Larrouturou, 1994, On the derivation of the modified equation for the analysis of linear numerical methods, CERMICS Report no 26. | MR 1300083

[3] S. Depeyre, R. Carpentier, High-order upwind numerical methods in two space dimensions, CERMICS Report, to appear.

[4] S. Depeyre, Stability analysis for the finite volume schemes on rectangular and triangular meshes applied to the 2D Maxwell system, to appear.

[5] J. P. Cioni, L. Fezoui, H. Steve, 1993, A parallel time-domain Maxwell solver using upwind schemes and triangular meshes, IMPACT in computing in science and engeenering No 165. | MR 1237286 | Zbl 0788.65119

[6] J. P. Cioni, L. Fezoui, D. Issautier, High order upwind schemes for solving time domain Maxwell equation, La Recherche Aérospatiale, numéro spécial électromagnétisme.

[7] R. Dautray, J. L. Lions, 1987, Analyse mathématique et calcul numérique, Masson, 1, 68-127. | MR 918560

[8] J. A. Desideri, A. Goujo, V. Selmin, 1987, Third-order numerical schemes for hyperbolic problems, Rapport de recherche INRIA no. 607.

[9] L. Fezoui, 1985, Résolution des équations d'Euler par un schéma de Van Leer en éléments finis, INRIA Report no. 358.

[10] N. Glinsky, 1990, Simulation numérique d'écoulements hypersoniques réactifs hors-équilibre chimique, Thesis, University of Nice-Sophia Antipolis. | Zbl 0923.76078

[11] D. Issautier, J. P. Cioni, F. Poupaud, L. Fezoui, A 2-D Vlasov Maxwell solver on unstructured meshes, Third international conference on mathematical and numerical aspects of wave propagation phenomena, Mandelieu, avril 1995. | MR 1328210 | Zbl 0874.76061

[12] P. D. Lax, A. Harten, B. Van Leer, 1983, On upstream differencing and Godunov type schemes for hyperbolic conservation laws, SIAM Revue, Vol. 25, No 1. | MR 693713 | Zbl 0565.65051

[13] S. Lanteri, 1991, Simulation d'écoulements aérodynamiques instationnaires sur une architecture massivement parallèle, Thesis, University of Nice Sophia-Antipolis.

[14] V. Selmin, 1987, Finite element solution of hyperbolic equations, I : one dimensional case, II : two dimensional case, INRIA Report no 655.

[15] B. Van Leer, 1982, Flux vector splitting for the Euler equations, Lecture Notes in Physics, Vol. 170, pp 405-512.

[16] R. F. Warming, Hyett, 1974, The modified equation approach to the stability and accuracy analysis of finite-difference methods, J. Comp. Phys., 14, (2), p 159. | MR 339526 | Zbl 0291.65023