@article{M2AN_1997__31_2_185_0, author = {Le Meur, Herv\'e}, title = {Non-uniqueness and linear stability of the one-dimensional flow of multiple viscoelastic fluids}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {31}, year = {1997}, pages = {185-211}, mrnumber = {1437120}, zbl = {0870.76005}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_1997__31_2_185_0} }
Le Meur, Hervé. Non-uniqueness and linear stability of the one-dimensional flow of multiple viscoelastic fluids. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 31 (1997) pp. 185-211. http://gdmltest.u-ga.fr/item/M2AN_1997__31_2_185_0/
[1] "Global existence and one-dimensional non linear stabihty of shearing motions of viscoelastic fluids of Oldroyd type", M2AN Vol 24, n° 3, 369-401. | Numdam | MR 1055305 | Zbl 0701.76011
& , 1990,[2] "On the stability of viscoelastic parallel shear flows", Technical Report, F.R.O.G. Michigan Technological University.
, , & , 1987,[3] "Existence results for the flow of viscoelastic fluids with a differential constitutive law". Nonlinear Analysis Theory, Methods & Applications, Vol. 15, No 9, 849-869. | MR 1077577 | Zbl 0729.76006
& , 1990,[4] | Zbl 0368.76006
& , 1972, Trans. Soc. Rheol., 16, 79.[5] "Capillary instability due to a shear stress on the free surface of a viscoelastic fluid layer", J. Non-Newtonian Fluid Mech., 45, 171-186. | Zbl 0761.76021
, 1992,[6] "Linear stability of plane Couette flow of an Upper Convected Maxwell fluid", J. Non-Newtonian Fluid Mech., 22, 23-33. | Zbl 0608.76006
& , 1986,[7] "An experimental investigation of interfacial instabilities in multilayer flow of viscoelastic fluids. I. Incompatible polymer Systems", J. Non-Newtonian Fluid Mech., 45, 355-384.
& , 1992,[8] Existence, unicité et stabilité d'écoulements de fluides viscoélastiques avec interface, PhD Thesis of University Paris-Sud Orsay.
, 1994,[9] Fluid dynamics of Visco Elastic liquids, Applied Mathematical Sciences 84 Springer Verlag. | MR 1051193 | Zbl 0698.76002
,[10] Stability of fluid motions, Vol. I, II Springer. | MR 627612 | Zbl 0345.76023
, 1976,[11] "A new constitutive equation derived from network theory", J. Non-Newtonian Fluid Mech, 2, 353-365. | Zbl 0361.76011
& , 1977,[12] Viscoélasticité non linéaire : Rhéologie et modélisation numérique, Ecoles CEA-EDF-INRIA, 27-30/01/ 1992.
,[13] "Numerical simulation of the flow of a viscoelastic fluid through an abrupt contraction", J. Non Newtonian Fluid Mech., 14, 279 299. | Zbl 0531.76013
& , 1984,[14] "On the linear stability of parallel shear flows of viscoelastic fluids of Jeffreys type". to appear.
,[15] "On the type of certain C0 Semigroups", Comm. Part. Diff. Eq., 18 (7 & 8), 1299-1307. | MR 1233196 | Zbl 0801.47029
, 1993,[16] Applied and Computational Complex Analysis, vol. I, John Wiley, New-York. | MR 372162 | Zbl 0313.30001
, 1974,