@article{M2AN_1997__31_1_57_0, author = {Pham Dinh Tao and Thai Quynh Phong and Horaud, Radu and Quan, Long}, title = {Stability of lagrangian duality for nonconvex quadratic programming. Solution methods and applications in computer vision}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {31}, year = {1997}, pages = {57-90}, mrnumber = {1432852}, zbl = {0878.65045}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_1997__31_1_57_0} }
Pham Dinh Tao; Thai Quynh Phong; Horaud, Radu; Quan, Long. Stability of lagrangian duality for nonconvex quadratic programming. Solution methods and applications in computer vision. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 31 (1997) pp. 57-90. http://gdmltest.u-ga.fr/item/M2AN_1997__31_1_57_0/
[1] Analysis of plane and axisymmetric flows of incompressible fluids with the stream tube method : Numerical simulation by trust region algorithm, Inter. J. for Numer. Method in Fluids, 13, pp. 371-399. | MR 1116654 | Zbl 0739.76050
, , and , 1991,[2] Numerical simulation of axisymmetric converging using stream tube and a trust region optimization algorithm, Engineering Optimization, 19, pp. 187-281.
, , and , 1992,[3] What can be seen in three dimensions with an uncalibrated stereo rig ? In G. Sandini, editor, Proccedings of the 2nd European Conference on Computer Vision, Santa Margherita Ligure, Italy, pp. 563-578. Springer-Verlag, May. | MR 1263961
, 1992,[4] 3D Computer Vision, M.I.T. Press.
, 1992,[5] Camera Self-Calibration : Theory and Experiments, In G. Sandini, editor, Proceedings of the 2nd European Conference on Computer Vision, Santa Margherita Ligure, Italy, pp. 321-334, Springer-Verlag, May. | MR 1263961
, and , 1992,[6] Camera calibration for 3D computer vision, In Proceedings of International Workshop on Machine Vision and Machine Intelligence, Tokyo, Japan.
and , 1987,[7] Practical methods of Optimization, John Wiley, New York. | MR 955799 | Zbl 0439.93001
, 1980,[8] Computing optimal constrained steps, SIAM J. Sci. Stat. Comput., 2, pp. 186-197. | MR 622715 | Zbl 0467.65027
, 1981,[9] Matrix Computations, North Oxford Academic, Oxford. | MR 1002570 | Zbl 0559.65011
and , 1989,[10] Some properties of the E matrix en two-view motion estimation, IEEE Transactions on PAMI, 11(12), pp. 1310-1312, December.
and , 1989,[11] An algorithm for minimization using exact second derivatives. Tech. Rep. TP515, Atomic energy research etablishment (AERE), Harwell, England.
, 1973,[12] A method for the solution of certain nonlinear problems in least squares, Quart. Appl. Math., 2. | MR 10666 | Zbl 0063.03501
, 1944,[13] Approximation et Optimisation, Hermann, Paris. | MR 467080 | Zbl 0238.90058
, 1972,[14] An algorithm for least squares estimation of nonlinear parameters, SIAM J. Appl. Math., 11. | MR 153071 | Zbl 0112.10505
, 1963,[15] The Levenberg-Marquardt algorithm : Implementation and theory. In G.A, Waston, editor, Lecture Notes in Mathematics 630, pp. 105-116. Springer-Verlag, Berlin-Heidelberg-New York. | MR 483445 | Zbl 0372.65022
, 1978,[16] Recent developments in algorithm and software for trust region methods. In A.Bachem, M. Grötschel and B.Korte, editors, Mathematical Proramming, The state of the art, pp. 258-287. Springer-Verlag, Berlin. | MR 717404 | Zbl 0546.90077
, 1983,[17] Computing a trust region step, SIAM J. Sci. Statist. Comput., 4, pp. 553-572. | MR 723110 | Zbl 0551.65042
and , 1981,[18] Relative 3D Reconstruction using multiples uncalibrated images, The International Journal of Robotics Research, (to appear).
, and ,[19] Convex Analysis, Princeton university Press, Princeton. | MR 274683 | Zbl 0193.18401
, 1970,[20] A family of trust region based algorithms for unconstrained minimization with strong global convergence properties, SIAM J. on Numer. Anal., 22, pp. 47-67. | MR 772882 | Zbl 0574.65061
, and , 1985,[21] Object Pose from 2-D to 3-D Point and Line Correspondences, International Journal of Computer Visions (to appear).
, , and ,[22] Newton's method with a model trust region modification, SIAM J. Numer. Anal., 19(2), pp. 409-426, avril. | MR 650060 | Zbl 0483.65039
, 1982,[23] Méthodes numériques pour la minimisation d'une forme quadratique sur une boule euclidienne. Rapport de Recherche, Université Joseph Fourier, Grenoble.
, 1989,[24] Minimisation d'une forme quadratique sur une boule et une sphère euclidiennes. Stabilité de la dualité lagrangienne. Optimalité globale. Méthodes numériques. Rapport de Recherche, LMI, CNRS URA 1378, INSA-Rouen.
and , 1993,[25] Numerical methods for globally minimizing a quadratic form over euclidean ball an sphere (submitted).
, and ,[25] Training multi-layered neural network with a trust region based algorithm, Math. Modell. Numer. Anal., 24 (4), pp. 523-553. | Numdam | MR 1070968 | Zbl 0707.90097
, and , 1990,