@article{M2AN_1997__31_1_1_0, author = {Bennethum, Lynn Schreyer and Feng, Xiaobing}, title = {A domain decomposition method for solving a Helmholtz-like problem in elasticity based on the Wilson nonconforming element}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {31}, year = {1997}, pages = {1-25}, mrnumber = {1432850}, zbl = {0877.73061}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_1997__31_1_1_0} }
Bennethum, Lynn Schreyer; Feng, Xiaobing. A domain decomposition method for solving a Helmholtz-like problem in elasticity based on the Wilson nonconforming element. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 31 (1997) pp. 1-25. http://gdmltest.u-ga.fr/item/M2AN_1997__31_1_1_0/
[1] Sobolev Spaces, Academic Press, New York. | MR 450957 | Zbl 0314.46030
, 1975,[2] Partial Differential Equations, John Wiley & Sons, New York. | MR 162045 | Zbl 0126.00207
, and , 1964,[3] The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam. | MR 520174 | Zbl 0383.65058
, 1978,[4] Boundary value problems for the systems of elastostatics in Lipschitz domains, Duke Math. J., 57, pp. 795-818. | MR 975122 | Zbl 0699.35073
, and , 1988,[5] Mathematical Analysis and Numencal Methods for Science and Technology, I, Springer-Verlag, New York.
and , 1990,[6] Méthodes de décomposition de domaines pour les problèmes de propagation d'ondes en régime harmonique, Ph. D. Thesis, Université Paris IX Dauphine, UER Mathématiques de la Decision. | Zbl 0849.65085
, 1991,[7] A domain decomposition method for the harmonie Maxwell equations, Itérative Methods in Linear Algebra, Elsevier Science Publishers B. V. (North-Holland), Amsterdam, pp. 475-484, R. Beauwens and P. de Groen, eds. | MR 1159757 | Zbl 0785.65117
, and ,[8] A parallel iterative procedure applicable to the approximate solution of second order partial differential e-quations by mixed finite element methods, Numer. Math., 65, pp.95-108. | MR 1217441 | Zbl 0813.65122
, , and , 1993,[9] Mixed finite element methods for second order elliptic problems, Matemática Aplicada e Computacional, 1, pp. 91-103. | MR 667620 | Zbl 0482.65057
and , 1982,[10] Inequalities in Mechanics and Physics, Springer-Verlag, Berlin. | MR 521262 | Zbl 0331.35002
and , 1976,[11] On miscible displacement in porous media and absorbing boundary conditions for electromagnetic wave propagation and on elastic and nearly elastic waves in the frequency domam, Ph. D. Thesis, Purdue University, 1992.
, 1992,[12] A mixed finite element domam decomposition method for nearly elastic waves in the frequency domain (submitted).
,[13] A domain decomposition method for convection-dominated convection-diffusion equations, preprint.
,[14] Singularities in Boundary Value Problems, Research Notes in Applied Mathematics, Vol. 22, Springer-Verlag and Masson. | MR 1173209 | Zbl 0766.35001
, 1992,[15] Partial Differential Equations, Fourth Edition, Springer-Verlag, New York. | MR 831655
, 1982,[16] Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems, CBMS Regional Conference Series in Mathematics, No. 83, American Mathematical Society. | MR 1282720 | Zbl 0812.35001
, 1994,[17] A parallelizable iterative procedure for the Helmholtz problem, Appl. Numer. Math., 14, pp. 435-449. | MR 1285471 | Zbl 0805.65100
, 1994,[18] Potential Methods in the Theory of Elasticity, Israel Program for Scientiflc Translations, Jerusalem. | MR 223128 | Zbl 0188.56901
, 1965,[19] On the convergence of Wilson's nonconforing element for solving the elastic problem, Comput. Methods Appl. Mech. Engrg, 7, pp. 1-16. | MR 455479 | Zbl 0345.65058
, 1976,[20] Contributions à un problème de M. M. Picone, Ann. Mat. Pura e Appl., 41, pp. 201-215. | MR 89978 | Zbl 0075.10103
, 1955,[21] Nonhomogeneous Boundary Value Problems and Applications, Vol I, Springer-Verlag, New York. | Zbl 0223.35039
and , 1972,[22] On the Schwartz alternatmg method I, III, First and Third International Symposium on Domain Decomposition Method for Partial Differential Equations, SIAM, Philadelphia. | MR 972510
, 1988, 1988,[23] A relaxation procedure for domain decomposition methods using finite elements, Numer. Math., 55, pp. 575-598. | MR 998911 | Zbl 0661.65111
and , 1989,[24] On Korn's second inequality, R.A.I.R.O Anal. Numér., 15, pp. 237-248. | Numdam | MR 631678 | Zbl 0467.35019
, 1981,[25] On the solution of the equations of motion for nearly elastic solids in the frequency domain, Proceedings of the IV Reunion de Trabajo en Procesamiento de la Información y Control, Centro de Cálculo Cientifico, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina, November 1991, or Technical Report #164, Center for Applied Mathematics, Purdue University.
, , and , 1992,[26] An observation concerning Ritz-Galerkin methods with indefinite bilinear forms, Math. Comp, 28, pp. 959-962. | MR 373326 | Zbl 0321.65059
, 1974,[27] Sur l'analyse numérique des méthodes d'éléments finis hybrides et mixtes, Thèse d'État, Université Pierre et Marie Curie, Paris.
, 1977,[28] Seismic Waves, Radiation, Transmission and Attenuation, McGraw-Hill.
, 1965,[29] Incompatible displacement models, Symposium on Numerical and Computer Methods in Structural Engineering, O.N.R., University of Illinois.
, , and , 1971,[30] Iterative methods by space decomposition and subspace correction, SIAM Review, 34, pp, 581-613. | MR 1193013 | Zbl 0788.65037
, 1992,[31] Functional Analysis, Springer-Verlag, Berlin-New York. | MR 617913 | Zbl 0435.46002
, 1980,