Convergence of a finite volume scheme for an elliptic-hyperbolic system
Vignal, M. H.
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 30 (1996), p. 841-872 / Harvested from Numdam
@article{M2AN_1996__30_7_841_0,
     author = {Vignal, M. H.},
     title = {Convergence of a finite volume scheme for an elliptic-hyperbolic system},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {30},
     year = {1996},
     pages = {841-872},
     mrnumber = {1423082},
     zbl = {0861.65084},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_1996__30_7_841_0}
}
Vignal, M. H. Convergence of a finite volume scheme for an elliptic-hyperbolic system. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 30 (1996) pp. 841-872. http://gdmltest.u-ga.fr/item/M2AN_1996__30_7_841_0/

[1] S. Benharbit, A. Chalabi, J. P. Vila, Numerical Viscosity and Convergence of Finite Volume Methods for Conservation Laws with Boundary Conditions, to appear in SIAM Journal of Num. Anal. | MR 1335655 | Zbl 0865.35082

[2] S. Champier, T. Gallouet, R. Herbin, 1993, Convergence of an Upstream finite volume scheme on a Triangular Mesh for a Nonlinear Hyperbolic Equation, Numer. Math. 66, pp. 139-157. | MR 1245008 | Zbl 0801.65089

[3] R. Diperna, 1985, Measure-Valued Solutions to Conservation Laws, Arch. Rat. Mech. Anal., 88, pp. 223-270. | MR 775191 | Zbl 0616.35055

[4] R. Eymard, T. Gallouet, R. Herbin, The finite volume method, in preparation for the Handbook of Numerical Analysis Ph. Ciarlet and J. L. Lions eds. | Zbl 0981.65095

[5] R. Eymard, T. Gallouet, 1993, Convergence d'un schéma de type Eléments Finis-Volumes Finis pour un système formé d'une équation elliptique et d'une équation hyperbolique, M2AN, 27, 7, pp. 843-861. | Numdam | MR 1249455 | Zbl 0792.65073

[6] J. M. Fiard and R. Herbin, 1994, Comparison between finite volume and finite element methods for the numerical computation of an elliptic problem arising in electrochemical engineering, Comput. Math. Appl. Mech. Engin., 115, pp. 315-338.

[7] T. Gallouet, R. Herbin, 1993, A uniqueness Result for Measure Valued Solutions of Non Linear Hyperbolic Equations, Differential Integral Equations, 6, 6, pp. 1383-1394. | MR 1235201 | Zbl 0806.35114

[8] R. Herbin, 1994, An error estimate for a finite volume scheme for a diffusion convection problem on a triangular mesh, Num. Meth. in P.D.E. | MR 1316144 | Zbl 0822.65085

[9] R. Herbin, O. Labergerie, Finite volume and finite element schemes for elliptic-hyperbolic problems, submitted.

[10] A. Szepessy, 1989, Measure valued solution of scalar conservation laws with boundary conditions, Arch. Rat. Mech. Anal., 107, 2, pp. 182-193. | MR 996910 | Zbl 0702.35155

[11] P. S. Vassilevski, S. I. Petrova, R. D. Lazarov, 1992, Finite Difference Schemes on Triangular Cell-Centered Grids With Local Refinement, SIAM J. Sci. Stat. Comput., 13, 6, pp. 1287-1313. | MR 1185647 | Zbl 0813.65115