@article{M2AN_1996__30_6_711_0, author = {Glowinski, Roland and Rieder, Andreas and Wells, Raymond O. and Xiaodong Zhou}, title = {A wavelet multigrid preconditioner for Dirichlet boundary value problems in general domains}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {30}, year = {1996}, pages = {711-729}, mrnumber = {1419935}, zbl = {0860.65121}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_1996__30_6_711_0} }
Glowinski, Roland; Rieder, Andreas; Wells, Raymond O.; Xiaodong Zhou. A wavelet multigrid preconditioner for Dirichlet boundary value problems in general domains. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 30 (1996) pp. 711-729. http://gdmltest.u-ga.fr/item/M2AN_1996__30_6_711_0/
[1] On the representation of operators in bases of compactly supported wavelets, SIAM J. Numerical Analysis, 6, pp. 1716-1740. | MR 1191143 | Zbl 0766.65007
, 1992,[2] The finite element methods for elliptic problems, North-Holland. | MR 520174 | Zbl 0999.65129
, 1987,[3] Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math., 41, pp. 906-966. | MR 951745 | Zbl 0644.42026
, 1988,[4] Circulant Matrices, John Wiley & Sons, New York. | MR 543191 | Zbl 0418.15017
, 1979,[5] Sobolev characterization of solutions of dilation equations, SIAM J. Math. Anal. 23(4), pp. 1015-1030. | MR 1166573 | Zbl 0761.42014
, 1992,[6] Wavelet methods in computational fluid dynamics. In M. Y. Hussaini et al., editor, Algorithmic Trends in Computational Fluid Dynamics, New York, pp. 259-276, Springer-Verlag. | MR 1295640
, , , , and , 1993,[7] Numerical Methods for Nonlinear Variational Problems, Springer Series in Computational Physics. Springer-Verlag, New York. | MR 737005 | Zbl 0536.65054
, 1984,[8] Multi Grid Methods and Applications, Springer Series in Computational Mathematics. Springer-Verlag, New York. | MR 814495 | Zbl 0595.65106
, 1985,[9] Iterative Solution of Large Sparse Systems of Equations, Applied Mathematical Sciences, Springer Vetlag, New York. | MR 1247457 | Zbl 0789.65017
, 1994,[10] Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bur. Standads 49, pp. 409-436. | MR 60307 | Zbl 0048.09901
and , 1952,[11] The evaluation of connection coefficients of compactly supported wavelets. In Y. Maday, editor, Proceedtngs of the French-USA Workshop on Wavelets and Turbulence, June 1991, New York, Princeton University, Springer-Verlag.
, and , 1992,[12] Multiresolution approximation and wavelet orthonormal bases of L2(R), Trans. Amer. Math. Soc., 315, pp. 69-87. | MR 1008470 | Zbl 0686.42018
, 1989,[13] Wavelets and the study of two dimensional turbulence. In Y. Maday, editor, Proceedings of the French USA Workshop on Wavelets and Turbulence June 1991, New York, Princeton University, Springer Verlag.
, 1992,[14] Representing the geometry or domains by wavelets with applications to partial differential equations. In J. Warren, editor, Curves and Surfaces in Computer Graphics III, volume 1834, pp. 23-33. SPIE.
and , 1992,[15] Wavelet solutions for the Dirichlet problem, Numer. Math., 70, pp. 379-396. | MR 1330870 | Zbl 0824.65108
and , 1995,[16] Wavelet interpolation and approximate solutions of elliptic partial differential equations. In R. Wilson and E. A. Tanner, editors, Noncompact Lie Croups, Kluwer, to appear Proceedings of NATO Advanced Research Workshop. | MR 1306537 | Zbl 0811.65096
and , 1994,[17] An Introduction to MultiGrid Methods, Pure & Applied Mathematics, A Wiley Interscience Series of Text, Monographs & Tracts John Wiley & Sons, New York. | MR 1156079 | Zbl 0760.65092
, 1991,