A wavelet multigrid preconditioner for Dirichlet boundary value problems in general domains
Glowinski, Roland ; Rieder, Andreas ; Wells, Raymond O. ; Xiaodong Zhou
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 30 (1996), p. 711-729 / Harvested from Numdam
@article{M2AN_1996__30_6_711_0,
     author = {Glowinski, Roland and Rieder, Andreas and Wells, Raymond O. and Xiaodong Zhou},
     title = {A wavelet multigrid preconditioner for Dirichlet boundary value problems in general domains},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {30},
     year = {1996},
     pages = {711-729},
     mrnumber = {1419935},
     zbl = {0860.65121},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_1996__30_6_711_0}
}
Glowinski, Roland; Rieder, Andreas; Wells, Raymond O.; Xiaodong Zhou. A wavelet multigrid preconditioner for Dirichlet boundary value problems in general domains. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 30 (1996) pp. 711-729. http://gdmltest.u-ga.fr/item/M2AN_1996__30_6_711_0/

[1] G. Beylkin, 1992, On the representation of operators in bases of compactly supported wavelets, SIAM J. Numerical Analysis, 6, pp. 1716-1740. | MR 1191143 | Zbl 0766.65007

[2] Ph. G. Ciarlet, 1987, The finite element methods for elliptic problems, North-Holland. | MR 520174 | Zbl 0999.65129

[3] I. Daubechies, 1988, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math., 41, pp. 906-966. | MR 951745 | Zbl 0644.42026

[4] P. J. Davis, 1979, Circulant Matrices, John Wiley & Sons, New York. | MR 543191 | Zbl 0418.15017

[5] T. Eirola, 1992, Sobolev characterization of solutions of dilation equations, SIAM J. Math. Anal. 23(4), pp. 1015-1030. | MR 1166573 | Zbl 0761.42014

[6] R. Glowinski, J. Periaux, M. Ravachol, T. W. Pan, R. O. Jr. Wells and X. Zhou, 1993, Wavelet methods in computational fluid dynamics. In M. Y. Hussaini et al., editor, Algorithmic Trends in Computational Fluid Dynamics, New York, pp. 259-276, Springer-Verlag. | MR 1295640

[7] R. Glowinski, 1984, Numerical Methods for Nonlinear Variational Problems, Springer Series in Computational Physics. Springer-Verlag, New York. | MR 737005 | Zbl 0536.65054

[8] W. Hackbusch, 1985, Multi Grid Methods and Applications, Springer Series in Computational Mathematics. Springer-Verlag, New York. | MR 814495 | Zbl 0595.65106

[9] W. Hackbusch, 1994, Iterative Solution of Large Sparse Systems of Equations, Applied Mathematical Sciences, Springer Vetlag, New York. | MR 1247457 | Zbl 0789.65017

[10] M. R. Hestenes and E. Stiefel, 1952, Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bur. Standads 49, pp. 409-436. | MR 60307 | Zbl 0048.09901

[11] A. Latto, H. L. Resnikoff and E. Tenenbaum, 1992, The evaluation of connection coefficients of compactly supported wavelets. In Y. Maday, editor, Proceedtngs of the French-USA Workshop on Wavelets and Turbulence, June 1991, New York, Princeton University, Springer-Verlag.

[12] S. Mallat, 1989, Multiresolution approximation and wavelet orthonormal bases of L2(R), Trans. Amer. Math. Soc., 315, pp. 69-87. | MR 1008470 | Zbl 0686.42018

[13] J. Weiss, 1992, Wavelets and the study of two dimensional turbulence. In Y. Maday, editor, Proceedings of the French USA Workshop on Wavelets and Turbulence June 1991, New York, Princeton University, Springer Verlag.

[14] R. O. Wells and Xiaodong Zhou, 1992, Representing the geometry or domains by wavelets with applications to partial differential equations. In J. Warren, editor, Curves and Surfaces in Computer Graphics III, volume 1834, pp. 23-33. SPIE.

[15] R. O. Wells and Xiaodong Zhou, 1995, Wavelet solutions for the Dirichlet problem, Numer. Math., 70, pp. 379-396. | MR 1330870 | Zbl 0824.65108

[16] R. O. Wells and Xiaodong Zhou, 1994, Wavelet interpolation and approximate solutions of elliptic partial differential equations. In R. Wilson and E. A. Tanner, editors, Noncompact Lie Croups, Kluwer, to appear Proceedings of NATO Advanced Research Workshop. | MR 1306537 | Zbl 0811.65096

[17] P. Wesseling, 1991, An Introduction to MultiGrid Methods, Pure & Applied Mathematics, A Wiley Interscience Series of Text, Monographs & Tracts John Wiley & Sons, New York. | MR 1156079 | Zbl 0760.65092