@article{M2AN_1996__30_4_489_0, author = {Ruas, V.}, title = {Finite element methods for the three-field Stokes system in $\mathbb {R}^3$ : Galerkin methods}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {30}, year = {1996}, pages = {489-525}, mrnumber = {1399501}, zbl = {0853.76041}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_1996__30_4_489_0} }
Ruas, V. Finite element methods for the three-field Stokes system in $\mathbb {R}^3$ : Galerkin methods. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 30 (1996) pp. 489-525. http://gdmltest.u-ga.fr/item/M2AN_1996__30_4_489_0/
[1] Resoluçâo Computacional de um Problema de Viscoelasticidade Plana Incompressfvel via Elementos Finitos Mistos, Master's Dissertation. Pontificia Universidade Catolica do Rio de Janieiro.
, 1987,[2] Sobolev Spaces, Academie Press, New York. | MR 450957 | Zbl 1098.46001
, 1970,[3] A stable finite element method for the Stokes equation, Calcolo, 21-4, pp. 337-344. | MR 799997 | Zbl 0593.76039
, and , 1984,[4] Principles of Non-Newtonian Fluid Mechanics, MGraw-Hill, New York.
and , 1974,[5] The finite element method with lagrange multipliers, Numer. Math., 20, pp. 179-192. | MR 359352 | Zbl 0258.65108
, 1973,[6] Approximation par éléments finis d'écoulements de fluides viscoélastiques. Existence de solutions approchées et majorations d'erreur. C. R. Acad. Sci. Paris, 312, Série I, pp. 541-544. | MR 1099689 | Zbl 0718.76010
and , 1991,[7] Dynamics of Polymenc Liquids, Vol. 1, Fluid Mechamcs, Second edition, John Wiley & Sons, New York.
, and , 1987,[8] Analyse Fonctionnelle, Théorie et Applications, Masson, Paris. | MR 697382 | Zbl 1147.46300
, 1983,[9] On the existence, uniqueness and approximation of saddlle-point problems arising from lagrange multipliers, RAIRO, Série rouge, Analyse Numérique R-2, pp. 129-151. | Numdam | MR 365287 | Zbl 0338.90047
, 1974,[10] The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam. | Zbl 0383.65058
, 1986,[11] Numencal Simulation of Non-Newtonian Flow, Elsevier, Amsterdam. | Zbl 0583.76002
, and , 1984,[12] Problemas Varionais Lineares, sua Aproximaçâo e Formulaçöes Mistas, Doctoral Thesis, Pontifïcia Universidade Católica do Rio de Janeiro.
, 1985,[13] Mécanique des Milieux Continus, Masson, Paris.
, 1990,[14] Les Inéquations en Mécanique et en Physique, Masson, Paris. | Zbl 0298.73001
and , 1972,[15] A preconditioned generalized minimal residual algorithm for the numerical solution of viscoelastic flows, Journal of Non-Newtonian fluid Mechanics, 36, pp. 277-288. | Zbl 0708.76012
and , 1990,[16] On the convergence of the Mixed Method of Crochet & Marchal for Viscoelastic Flows, Comp. Meth. Appl. Mech. Engin., 73, pp. 341-350. | MR 1016647 | Zbl 0692.76002
and , 1988,[17] Error analysis of some Galerkin-least-squares methods for the elasticity equations, SIAM Journal of Numerical Analysis, 28-6, pp. 1680-1697. | MR 1135761 | Zbl 0759.73055
and , 1991[18] Cours de Mécanique des Milieux Continus, Masson & Cie, Paris. | MR 368541 | Zbl 0254.73001
, 1973,[19] Finite Element Methods for Navier-Stokes Equations, Springer Serie in Computational Mathematics 5, Springer-Verlag, Berlin. | MR 851383 | Zbl 0585.65077
and , 1986,[20] Singularities in Boundary Values Problems, In Research Notes in Applied Mathematics, P. G. Ciarlet & J.-L. Lions eds., Masson & Springer Verlag, Paris. | MR 1173209 | Zbl 0766.35001
, 1992,[21] The Mathematical Theory of Viscous Incompressible Flow, Gordon & Breach, Reading, Berkshire. | MR 155093 | Zbl 0121.42701
, 1963,[22] On a finite element method for solving the neutron transport equations, in : Mathematical Aspects of Finite Element Methods in Partial Differential Equations, C. de Boor ed., Academic Press, New York. | Zbl 0341.65076
and , 1976.[23] Problèmes aux Limites Non-homogènes et Applications, Dinod, Paris. | Zbl 0165.10801
and , 1968,[24] Um Modelo Numérico para a Simulaçâo do Escoamento de Fluidos Viscoelâsticos via Elementos Finitos, Doctoral Thesis, Pontificia Univesidade Católica do Rio de Janeiro.
, 1993,[25] On a mixed finite element method for the Stokes Problem in R3, RAIRO, Analyse Numérique, 16-3, pp. 275-291. | Numdam | MR 672419 | Zbl 0488.76039
, 1982,[26] Sur l'application de quelques méthodes d'éléments finis à la résolution d'un problème d'élasticité incompressible non linéaire, Rapport de Recherche 24, INRIA, Rocquencourt, France.
, 1980,[27] Une méthode d'éléments finis non conformes en vitesse pour le problème de Stokes tridimensionnel. Matematica Aplicada e Compuracional, 1-1, pp.53-74. | MR 667618 | Zbl 0489.76049
, 1982,[28] Une méthode mixte contrainte-déplacement-pression pour la résolution de problèmes de viscoélasticité incompressible en déformations planes, C. R. Acad. Sc., Paris, 301, série II, 16, pp. 1171-1174. | MR 827628 | Zbl 0578.73041
, 1985,[29] Finite element solution of 3D viscous flow problems using non standard degrees of freedom, Japan Journal of Applied Mathematics, 2-2, pp. 415-431. | MR 839337 | Zbl 0611.76038
, 1985,[30] Un método de elementos finitos quadrilatelares mejorado para el sistema de Stokes asociado al flujo de fluidos viscoelâsticos, Revista Internacional sobre Métodos Numéricos para Càlculo y Diseno en Ingenieria, 8-1, pp.77-85. | MR 1160319
and , 1992,[31] Finite Element Methods for Three-Dimensional Incompressible Flow, in Finite Element in Fluids, Vol. 8, T. J. Chung ed., Hemisphere Publishing Corporation, Washington, Chapter X, pp. 211-235. | MR 1188025
, 1992,[32] A convergent three field quadrilateral finite element method for simulating viscoelastic flow on irregular meshes. Revue Européenne des Éléments finis, 4-1, pp.391-406. | Zbl 0924.76060
, 1992,[33] Approximation of the three-field Stokes System via optimized quadrilateral finite elements, Modélisation Mathématiques et Analyse Numérique, 27-1, pp. 107-127. | Numdam | MR 1204631 | Zbl 0765.76053
, , , 1993,[34] An optimal three-field finite element approximation of the Stokes System with continuous extra stresses, Japan Journal of Industrial and Applied Mathematics, 11-1, pp. 103-130. | MR 1266524 | Zbl 0797.76045
, 1994,[35] Galerkin-least-squares finite element methods for the three-field Stokes System in three-dimension space, to appear. | Zbl 0894.76040
,[36] Analyse d'une formulation à trois champs du problème de Stokes, Modélisation Mathématique et Analyse Numérique, 27-7, pp. 817-841. | Numdam | MR 1249454 | Zbl 0791.76008
, 1993,[37] Engineering Rheology, Claredon Press, Oxford. | MR 830210 | Zbl 1012.76002
, 1985,[38] The Finite Element Method in Engineering Science. McGraw Hill, Maidenhead. | MR 315970 | Zbl 0237.73071
, 1971,