On the convergence rate of spectral approximation for the equations for nonhomogeneous asymmetric fluids
Boldrini, José Luiz ; Rojas-Medar, Marko
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 30 (1996), p. 123-155 / Harvested from Numdam
Publié le : 1996-01-01
@article{M2AN_1996__30_2_123_0,
     author = {Boldrini, Jos\'e Luiz and Rojas-Medar, Marko},
     title = {On the convergence rate of spectral approximation for the equations for nonhomogeneous asymmetric fluids},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {30},
     year = {1996},
     pages = {123-155},
     mrnumber = {1382108},
     zbl = {0842.76001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_1996__30_2_123_0}
}
Boldrini, José Luiz; Rojas-Medar, Marko. On the convergence rate of spectral approximation for the equations for nonhomogeneous asymmetric fluids. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 30 (1996) pp. 123-155. http://gdmltest.u-ga.fr/item/M2AN_1996__30_2_123_0/

[1] J. L. Boldrini, M. A. Rojas-Medar, Strong solutions of the equations for nonhomogeneous asymmetric fluids, to appear. | MR 1303166

[2] D. W. Condiff, J. S. Dahler, 1964, Fluid mechanics aspects of antisymmetric stress, Phys. Fluids, 7, number 6, pp. 842-854. | MR 167060 | Zbl 0125.15801

[3] J. U. Kim, 1987, Weak solutions of an initial boundary value problem for an incompressible viscous fluid, SIAM J. Math. Anal., 18, pp. 890-96. | MR 871823 | Zbl 0626.35079

[4] O. A. Ladyzhenskaya, 1969, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, Second Revised Edition, New York. | MR 254401 | Zbl 0184.52603

[5] O. A. Ladyzhenskaya, V. A. Solonnikov, 1978, Unique solvability of an initial and boundary value problem for viscous incompressible fluids, Zap. Naučn Sem. Leningrado Otdel Math. Inst. Steklov, 52, 1975, pp. 52-109 ; English Transi., J. Soviet Math., 9, pp. 697-749. | Zbl 0401.76037

[6]G. Lukaszewicz, 1988, On nonstationary flows of asymmetrie fluids, Rendiconti Accademia Nazionale delle Scienze detta dei XL, Memorie di Matematica 106°> XII, fasc. 3, pp. 35-44. | Zbl 0668.76044

[7] G. Lukaszewicz, 1989, On the existence, uniqueness and asymptotic properties of solutions of flows of asymmetric fluids, Rendiconti Accademia Nazionale della Scienze detta dei XL, Memorie di Matematica 107 °, XIII, fasc. 6, pp. 105-120. | Zbl 0692.76020

[8] G. Lukaszewicz, 1990, On nonstationary flows of asymmetrie fluids, Math. Methods Appl. Sci., 19, no. 3, pp. 219-232. | Zbl 0703.76031

[9] L. G. Petrosyan, Some Problems of Mechanics of Fluids with Antisymmetric Stress Tensor, Erevan, 1984 (in Russian).

[10] R. Rautmann, 1980, On convergence rate of nonstationary Navier-Stokes approximations, Proc. IUTAM Symp. Approx. Meth., for Navier-Stokes Problem, Lecture Notes in Math., 771, Springer-Verlag. | Zbl 0434.35074

[11] M. Rojas-Medar, J. L. Boldrini, 1993, Spectral Galerkin approximations for the Navier-Stokes Equations : uniform in time error estimates, Rev. Mat. Apl., 14, pp. 1-12. | Zbl 0788.76063

[12] R. Salvi, 1989, Error estimates for the spectral Galerkin approximations of the solutions of Navier-Stokes type equation, Glasgow Math. J., 31, pp. 199-211. | Zbl 0693.76040

[13] R. Salvi, 1991, The equations of viscous incompressible nonhomogeneous fluid : on the existence and regularity, J. Australian Math. Soc, Series B - Applied Mathematics, 33, Part 1, pp. 94-110. | Zbl 0732.76032

[14] J. Simon, 1990, Nonhomogeneous viscous incompressible fluids : existence of velocity, density, and pressure, SIAM J. Math. Anal, 21, pp. 1093-1117. | Zbl 0702.76039

[15] R. Temam, 1979, Navier-Stokes Equations, Theory and Numerical Analysis, North-Holland, Amsterdam. | Zbl 0426.35003

[16] W. Von Wahl, 1985, The equations of Navier-Stokes Equations and Abstract Parabolic Equations, Aspects of Math., 58, Vieweg, Braunschweig-Wiesbaden.