@article{M2AN_1995__29_7_779_0, author = {Carstensen, Carsten and Stephan, Ernst P.}, title = {Adaptive coupling of boundary elements and finite elements}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {29}, year = {1995}, pages = {779-817}, mrnumber = {1364401}, zbl = {0849.65083}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_1995__29_7_779_0} }
Carstensen, Carsten; Stephan, Ernst P. Adaptive coupling of boundary elements and finite elements. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 29 (1995) pp. 779-817. http://gdmltest.u-ga.fr/item/M2AN_1995__29_7_779_0/
[1] A posteriori error estimates and adaptive techniques for the finite element method, Univ. of Maryland, Institute for Physical Science and Technology, Tech. Note BN-968, College Park, MD.
, , 1981,[2] Interpolation spaces, Springer, Berlin. | MR 482275 | Zbl 0344.46071
, , 1976,[3] Interface problem in holonomie elastoplasticity, Math. Meth. in the Appl. Sc.16, 819-835. | MR 1245631 | Zbl 0792.73017
, 1993,[4] Adaptive boundary element methods for some first kind integral equations, SIAM J. Numen Anal, (to appear). | MR 1427458 | Zbl 0863.65073
, , 1996,[5] Coupling of FEM and BEM for a Non-linear Interface Problem ; the h-p Version, Numerical Methods for Partial Differential Equations. (to appear). | MR 1345759 | Zbl 0833.65123
, , 1993.[6] Approximation by finite element functions using local regularization, RAIRO, Ser. Rouge Anal Numer., R-2, pp. 77-84. | Numdam | MR 400739 | Zbl 0368.65008
, 1975,[7] Symmetrie methods for the coupling of finite elements and boundary elements, In : C. A. Brebia et al. (Eds.), Boundary Elements IX, Vol. 1,pp. 411-420, Springer-Verlag, Berlin.
, 1987,[8] Boundary integral operators on Lipschitz domains : Elementary results, SIAM J. Math. AnaL, 19, pp. 613-626. | Zbl 0644.35037
, 1988,[9] A direct boundary integral equation method for transmission problems, J.Math. Anal. Appl., 106, pp. 367-413. | Zbl 0597.35021
, , 1985,[10] Coupling of finite and boundary elements for inhomogeneous transmission problems in R3, in Mathematics of Finite Elements and Applications VI, ed. J. R, Whiteman, pp.289-296, Academie Press. | Zbl 0687.73034
, , 1988,[11] Coupling of finite and boundary element methods for an elastoplastic interface problem, SIAM J. Nurnen Anal., 27, pp. 1212-1226. | Zbl 0725.73090
, , 1990,[12] High degree efficient symmetrical Gaussian quadrature rules for the triangle, Intern. J. Numer. Meth. Engin., 21, pp. 1129-1148. | Zbl 0589.65021
, 1995,[13] An adaptive finite element method for linear elliptic problems, Math. Comp., 50, pp, 361-383. | Zbl 0644.65080
, , 1988,[14] Adaptive finite element methods for parabolicproblems. I. A linear model problem, SIAM J. Numer. Anal., 28, pp. 43-77. | Zbl 0732.65093
, , 1991,[15] On the h-p version of the boundary element method for Symm's integral equation on polygons, To appear in Comput.Meth. Appl. Mech. Engin. | Zbl 0842.65076
, , ,[16] Integralgleichungen erster Art und konforme Abbildung, Math.Z, 147, pp. 113-129. | Zbl 0304.30006
, 1976,[17] On a class of variational formulations for some nonlinear interface problems, Rendiconti di Mathematica Ser. VII, 10, pp. 681-715. | Zbl 0767.35019
, , 1990,[18] On the coupled BEM and FEM for a nonlinear exterior Dirichlet problem in R2, Numer. Math., 61,pp, 171-214. | MR 1147576 | Zbl 0741.65084
, , 1992,[19] A new class of variational formulations for the coupling of finite and boundary element methods, J. Comput. Math., 8, pp. 223-232. | MR 1299224 | Zbl 0712.65093
, 1990,[20] Adaptive finite element methods in computational mechanics. Comput Meth. Appl. Mech. Engin., 101, 143-181. | MR 1195583 | Zbl 0778.73071
, , 1992,[21] Non-homogeneous boundary value problems and applications, Vol. I. Berlin-Heidelberg-New York : Springer. | MR 350177 | Zbl 0223.35039
, , 1972,[22] La méthode des éléments finis appliquée aux équations intégrales de la physique, First meeting AFCET-SMF on applied mathematics Palaiseau, Vol. 1, pp. 181-190. | Zbl 0486.45008
, 1978,[23] On the h-, p- and h-p versions of the boundary element method-numerical results, Computer Meth. in Appl. Mechanicsand Egin, 83, pp. 69-89. | MR 1078696 | Zbl 0732.65101
, , 1990,[24] Adaptive boundary element methods in ; C. A. Brebbia, W. LWendland and G. Kuhn, eds., Boundary Elements, 9, Vol. 1, pp.259-273, Springer-Verlag, Heidelberg. | MR 965323
, 1987,[25] The Galerkin Method for Intégral Equations of thefirst kind with Logarithmic Kernel, Theory, IMA J. Numer. Anal, 8, pp. 105-122. | MR 967846 | Zbl 0636.65143
, , 1988,[26] An augmented Galerkin Procedure for the boundary integral method applied to two-dimensional screen and crack problems, Applicable Analysis, 18, pp. 183-219. | MR 767500 | Zbl 0522.73083
, , 1984,[27] Gaussian quadrature formulas, Prentice Hall,Englewood Cliff. | MR 202312 | Zbl 0156.17002
, , 1966,[28] A posteriori error estimates for non-linear problems. Finite element discretization of elliptic equations, Preprint. | MR 1213837
, 1992,[29] On Asymptotic Error Estimates for Combined BEM and FEM, in Finite and boundary element techniques from mathematical and engineering point of view, CISM Courses 301, E. Stein, W. L. Wendland, eds.,Springer-Verlag New York, pp. 273-331. | MR 1002581 | Zbl 0672.65089
, 1988,[30] Adaptive boundary element methods for strongly elliptic integral equations, Numer. Math., 53, pp. 539-558. | MR 954769 | Zbl 0657.65138
, , 1988,[31] A posteriori local error estimates ofboundary element methods with some pseudo-differential equations on closed curves, Journal for Computational Mathematics, 10, 273-289. | MR 1167929 | Zbl 0758.65072
, , 1992,[32] Nonlinear functional analysis and its applications II, Vol. A and B, Springer-Verlag, New York. | MR 816732 | Zbl 0684.47029
, 1990,