@article{M2AN_1995__29_6_687_0, author = {Blanc, Ph. and Gasser, L. and Rappaz, J.}, title = {Existence for a stationary model of binary alloy solidification}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {29}, year = {1995}, pages = {687-699}, mrnumber = {1360672}, zbl = {0837.35119}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_1995__29_6_687_0} }
Blanc, Ph.; Gasser, L.; Rappaz, J. Existence for a stationary model of binary alloy solidification. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 29 (1995) pp. 687-699. http://gdmltest.u-ga.fr/item/M2AN_1995__29_6_687_0/
[1] Numerical Simulation of Transport Processes in Multicomponent Systems Related to Solidification Problems, Thesis EPFL.
, 1995,[2] On a Penalty Method for the Stockes Problem in Regions With Moving Boundaries, Report DMA-EPFL N. 14.90.
, , , 1990,[3] Existence of a Stationary Solution of a Binary Alloy Problem, Report DMA-EPFL N. 09.93.
, , 1993,[4] The Steady State Stefan Problem with Convection, Archive for Rational Mechanics and Analysis, 73, pp. 79-97. | MR 555585 | Zbl 0436.76056
, , , 1980,[5] The Bidimensional Stefan Problem with Convection : the Time Dependent Case, Comm. in Partial Dijferential Equations, 14,pp. 1549-1604. | MR 728873 | Zbl 0547.35117
, , , 1983,[6] Analyse mathématique et calcul numérique pour les sciences et les techniques, tome 2, Masson. | MR 902801 | Zbl 0749.35005
, , 1987,[7] Elliptic Partial Differential Equations of Second Order, Springer. | MR 473443 | Zbl 0361.35003
, , 1977,[8] Linear and Quasilinear Elliptic Equations, Academic Press. | MR 244627 | Zbl 0164.13002
, , 1968,[9] Navier-Stokes Equations, North-Holland. | MR 769654 | Zbl 0568.35002
, ,