@article{M2AN_1995__29_2_171_0, author = {Makridakis, Ch. G. and Monk, P.}, title = {Time-discrete finite element schemes for Maxwell's equations}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {29}, year = {1995}, pages = {171-197}, mrnumber = {1332480}, zbl = {0834.65120}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_1995__29_2_171_0} }
Makridakis, Ch. G.; Monk, P. Time-discrete finite element schemes for Maxwell's equations. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 29 (1995) pp. 171-197. http://gdmltest.u-ga.fr/item/M2AN_1995__29_2_171_0/
[1] Study of an implicit scheme for integrating Maxwell's equations, Comp.Meth. Appl. Mech. Eng., 22, 327-346. | MR 579675 | Zbl 0433.73067
, , and , 1980,[2] Semidiscrete and single step fully discrete approximations for second order hyperbolic equations, RAIRO Anal. Numer, 13, 75-100. | Numdam | MR 533876 | Zbl 0405.65057
and , 1979,[3] Solving Maxwell equations in a closed cavity, and the question of « spurious » modes, IEEE Trans. Mag., 26, 702-705.
, 1990,[4] The Finite Element Method for Elliptic Problems, vol. 4 of Studies in Mathematics and It's Applications, Elsevier North-Holland, NewYork. | MR 520174 | Zbl 0383.65058
, 1978,[5] Discrete vector potential representation of a divergence free vector field in three dimensional domains : numerical analysis of a model problem, SIAM J. Numer. Anal., 27, 1103-1142. | MR 1061122 | Zbl 0717.65086
, 1990,[6] Incompressible finite element methods for Navier-Stokes equations with nonstandard boundary conditions in R3, Math. Comp., 51,53-58. | Zbl 0666.76053
, 1988,[7] Curl-conforming finite element methods for Navier-Stokes equations with non-standard boundary conditions in R3, in The Navier-Stokes equations. Theory and Numerical Methods, Lecture Notes, 1431,Springer, 201-218. | MR 1072191 | Zbl 0702.76037
, 1990,[8] Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, New York. | MR 851383 | Zbl 0585.65077
and , 1986,[9] On time-harmonic Maxwell equations with nonhomogeneous conductivities : solvability and FE-approximation, Aplikace Matematiky, 34, 480-499. | MR 1026513 | Zbl 0696.65085
and , 1989,[10] Initial Boundary Value Problems in Mathematical Physics, John Wiley, New York. | Zbl 0599.35001
, 1988,[11] Radar cross section computations of inhomogeneous scatterers using edge-based finite element method in frequency and time domains, Radio Science, 28, 1181-1193.
and , 1993,[12] Use of Whitney's edge and face elements for efficient finite element time domain solution of Maxwell's equation, Preprint.
, and , 1993,[13] On mixed finite element methods in linear elastodynamics, Numer. Math., 61, 235-260. | MR 1147578 | Zbl 0734.73074
, 1992,[14] An analysis of Nédélec's method for the spatial discretization of Maxwell's equations, J. Comp. Appl. Math., 47, 101-121. 3 | MR 1226366 | Zbl 0784.65091
, 1993,[15] Mixed finite elements in R3, Numer. Math., 35, 315-341. | MR 592160 | Zbl 0419.65069
, 1980,[16] Éléments finis mixtes incompressibles pour l'équation de Stokes dans R3, Numer. Math., 39, 97-112. | Zbl 0488.76038
,[17] Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Trans. on Antennas and Propagation, AP-16, 302-307. | Zbl 1155.78304
, 1966,