Plane stress elasto-plastic constitutive equations obtained by homogenizing one-dimensional structures
Bonnetier, Eric
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 29 (1995), p. 23-52 / Harvested from Numdam
Publié le : 1995-01-01
@article{M2AN_1995__29_1_23_0,
     author = {Bonnetier, Eric},
     title = {Plane stress elasto-plastic constitutive equations obtained by homogenizing one-dimensional structures},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {29},
     year = {1995},
     pages = {23-52},
     mrnumber = {1326799},
     zbl = {0817.73013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_1995__29_1_23_0}
}
Bonnetier, Eric. Plane stress elasto-plastic constitutive equations obtained by homogenizing one-dimensional structures. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 29 (1995) pp. 23-52. http://gdmltest.u-ga.fr/item/M2AN_1995__29_1_23_0/

[1] I. Babšuka, Y. Li, K. L. Jerina, 1991, Reliability of Computational Analysis of Plasticity Problems , in Nonlinear Computational Mechanics. State of the Art, P. Wriggers, W. Wagner, eds., Springer Verlag, 375-398.

[2] E. Bonnetier, 1988, Ph. D. thesis, University of Maryland.

[3] B. Halphen, Nguyen Quoc Son, 1975, Sur les matériaux standards généralisés, J. Méca., 14, 39-63. | MR 416177 | Zbl 0308.73017

[4] J. -L. Lions, 1962, Problèmes aux limites dans les équations aux dérivées partielles, Presses de l'Université de Montréal. | MR 251372 | Zbl 0143.14003

[5] A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, Dover. | JFM 47.0750.09 | Zbl 0063.03651

[6] T. Mlyoshi, 1985, Foundations of the Numerical Analysis of Plasticity, Lecture Notes in Numerical and Applied Analysis, Vol. 7, North Holland. | Zbl 0596.73015

[7] P. M. Suquet, 1980, Mathematical Problems in Plasticity Theory, Proceedings of the Symposium on Complementary Problems and Variational Inequalities, Erice, R. W. Cottle, F. Gianessi and J. -L. Lions, eds., John Wiley and Sons, New York, 357-373. | MR 578759 | Zbl 0494.73030