@article{M2AN_1994__28_6_725_0, author = {Liu, W. B. and Barrett, John W.}, title = {Quasi-norm error bounds for the finite element approximation of some degenerate quasilinear elliptic equations and variational inequalities}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {28}, year = {1994}, pages = {725-744}, mrnumber = {1302421}, zbl = {0820.65073}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_1994__28_6_725_0} }
Liu, W. B.; Barrett, John W. Quasi-norm error bounds for the finite element approximation of some degenerate quasilinear elliptic equations and variational inequalities. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 28 (1994) pp. 725-744. http://gdmltest.u-ga.fr/item/M2AN_1994__28_6_725_0/
[1] Some boundary-value problems for the equation ∇ (|∇φ|N ∇φ) = 0. Q. Jl Mech. Appl. Math., 37, 401-419. | MR 760209 | Zbl 0567.73054
, , 1984,[2] Finite element approximation of the p-Laplacian, Math. Comp., 61. 523-537. | MR 1192966 | Zbl 0791.65084
, , 1993,[3] Finite element error analysis of a quasi-Newtoman flow obeying the Carreau or power law, Numer. Math., 64, 433-453. | MR 1213411 | Zbl 0796.76049
, , 1993,[4] Finite element approximation of the parabolic p-Laplacian, SIAM, J. Numer. Anal., 31, 413-428. | MR 1276708 | Zbl 0805.65097
, , 1994,[5] A regularity theory for a general class of quasilmear elliptic partial differential equations and obstacle problems, Arch. Rat. Mech. Anal., 114, 383-394. | MR 1100802 | Zbl 0733.35024
, 1991,[6] Finite element error estimates for non-linear elliptic equations of monotone type, Numer. Math. 54, 373-393. | MR 972416 | Zbl 0643.65058
, 1989,[7] The Finite Element Methodfor Elliptic Problems, North. Holland, Amsterdam. | MR 520174 | Zbl 0383.65058
, 1978,[8] On finite element approximation in the L∞-norm of variational inequalities, Numer. Math., 47, 45-57. | MR 797877 | Zbl 0574.65064
, 1985,[9] Finite element methods for nonlinear elliptic Systems of second order, Math. Nachr., 94, 155-172. | MR 582526 | Zbl 0444.65077
, , 1980,[10] Error estimates for the approximation of a class of variational inequalities, Math. Comp., 28, 963-971. | MR 391502 | Zbl 0297.65061
, 1974,[11] Asymptotic L∞-error estimates for linear finite element approximations of quasilinear boundary problems, SIAM, J. Numer. Anal., 15, 419 431. | MR 502037 | Zbl 0386.65049
, , 1978,[12] Sur l'approximation par éléments finis d'ordre un, et la résolution, par pénalisation-dualite, d'une classe de problèmes de Dirichlet non linéaires, R.A.I.R.O. Analyse Numérique, 2, 41-64. | Numdam | MR 388811 | Zbl 0368.65053
, , 1975,[13] A remark on the regulanty of the solutions of the p-Laplacian and its applications to their finite element approximation, J. Math. Anal. Appl., 178, 470-487. | MR 1238889 | Zbl 0799.35085
, , 1993,[14] A further remark on the regularity of the solutions of the p-Laplacian and its applications to their finite element approximation, Nonlinear Anal., 21, 379-387. | MR 1237129 | Zbl 0856.35017
, , 1993,[15] Higher order regularity for the solutions of some quasilinear degenerate elliptic equations in the plane, SIAM, J. Math. Anal., 24, 1522-1536. | MR 1241156 | Zbl 0802.35013
, , 1993,[16] Finite element approximation of some degenerate monotone quasilinear elliptic Systems, SIAM, J. Numer. Anal. (to appear). | MR 1377245 | Zbl 0846.65064
, ,[17]On the approximate solution of nonlinear variation inequalities, Numer. Math., 29, 451-462. | MR 658146 | Zbl 0354.65054
, 1978,[18] Pointwise accuracy of a finite element method for nonlinear variational inequalities, Numer. Math., 54, 601-618. | MR 981294 | Zbl 0661.65065
, 1989,[19] N-diffusion, Aust. J. Phys., 14. 1-13. | MR 140343 | Zbl 0137.18402
, 1961,