@article{M2AN_1994__28_4_377_0, author = {Ewing, R. E. and Wang, J.}, title = {Analysis of multilevel decomposition iterative methods for mixed finite element methods}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {28}, year = {1994}, pages = {377-398}, mrnumber = {1288504}, zbl = {0823.65035}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_1994__28_4_377_0} }
Ewing, R. E.; Wang, J. Analysis of multilevel decomposition iterative methods for mixed finite element methods. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 28 (1994) pp. 377-398. http://gdmltest.u-ga.fr/item/M2AN_1994__28_4_377_0/
[1] The finite element method with Lagrangian multipliers, Numer, Math., 20, 179-192. | MR 359352 | Zbl 0258.65108
, 1973,[2] An optimal order process for solving elliptic finite element equations, Math. Comp., 36, 35-51. | MR 595040 | Zbl 0466.65059
and , 1981,[3] The Hierarchical basis multigrid method, Numer. Math., 52, 427-458. | MR 932709 | Zbl 0645.65074
, and , 1988,[4] A preconditioning technique for the efficient solution of problems with local grid refinement, Compt. Meth. Appl. Mech. Eng., 67, 149-159. | Zbl 0619.76113
, , and , 1988,[5] Convergence estimates for product iterative methods with applications to domain decomposition, Math. Comp., 57, 1-22. | MR 1090464 | Zbl 0754.65085
, , and , 1991,[6] Convergence estimate for multigrid algorithms without regularity assumptions, Math. Comp., 57, 23-45. | MR 1079008 | Zbl 0727.65101
, , and , 1911,[7] On the existence, uniqueness, and approximation of saddle point problems arising from Lagrangian multipliers, R.A.I.R.O., Anal. Numér., 2, 129-151. | Numdam | MR 365287 | Zbl 0338.90047
, 1974,[8] Efficient rectangular mixed finite elements in two and three space variables, R.A.I.R.O., Anal. Numér., 21, 581-604. | Numdam | MR 921828 | Zbl 0689.65065
, , and , 1987,[9] Two families of mixed finite elements for second order elliptic problems, Numer. Math., 47, 217-235. | MR 799685 | Zbl 0599.65072
, and , 1985,[10] Global estimates for mixed finite element methods for second order elliptic equations, Math. Comp., 45, 39-52. | MR 771029 | Zbl 0624.65109
and ,[11] Analysis of the Schwarz algorithm for mixed finite element methods, R.A.I.R.O. M2AN, 26, 739-756. | Numdam | MR 1183415 | Zbl 0765.65104
and , 1992,[12] An additive variant of the Schwarz alternating method for the case of many subregions, Technical Report, Courant Institute of Mathematical Sciences, 339.
and , 1987,[13] Some domain decomposition algorithms for elliptic problems, Technical Report, Courant Institute of Mathematical Sciences, 438. | MR 1038100
and , 1989,[14] Error estimates for mixed methods, R.A.I.R.O., Anal. Numér., 14, 249-277. | Numdam | MR 592753 | Zbl 0467.65062
and , 1980,[15] An analysis of the convergence of mixed finite element methods, R.A.I.R.O., Anal. Numér., 11, 341-354. | Numdam | MR 464543 | Zbl 0373.65055
,[16] Domain decomposition and mixed finite element methods for elliptic problems, Proceedings of the First International Symposium on Domain Decomposition Methods for Partial Dijferential Equations (R. Glowinski, G. H. Golub, G. A. Meurant and J. Périaux, eds.). | MR 972509 | Zbl 0661.65105
and , 1988,[17] Multi-Grid Methods and Applications, Springer-Verlag, New York. | Zbl 0595.65106
, 1985,[18] On the Schwarz alternating method, Proceedings of the First International Symposium on Domain Decomposition Methods for Partial Differential Equations (R. Glowinski, G. H. Golub, G. A. Meurant and J. Périaux, eds.). | MR 972509 | Zbl 0658.65090
, 1988,[19] Domain Decomposition and Iterative Refinement Methods for Mixed Finite Element Discretizations of Elliptic Problems, Ph. D. Thesis, New York University.
, 1989,[20] A mixed finite element method for 2nd order elliptic problems, Mathematical Aspects of Finite Element Methods, Lecture Notes in Mathematics (606), Springer-Verlag, Berlin and New York, 292-315. | MR 483555 | Zbl 0362.65089
and , 1977,[21] Über einige Abbildungsaufgaben, Ges. Math. Abh., 11, 65-83.
, 1869,[22] Convergence analysis without regularity assumptions for multigrid algorithms based on SOR smoothing, SIAM J. Numer. Anal., 29, 987-1001. | MR 1173181 | Zbl 0753.65093
, 1992,[23] Convergence analysis of Schwarz algorithm and multilevel decomposition iterative methods I : selfadjoint and positive definite elliptic problems, in Iterative Methods in Linear Algebra, R. Beauwens and P. de Groen (eds.), North-Holland, Amsterdam. | MR 1159720 | Zbl 0785.65115
, 1992,[24] Convergence analysis of the Schwarz algorithm and multilevel decomposition iterative methods II : non-selfadjoint and indefinite elliptic problems, SIAM J. Numer. Anal., 30, 953-970. | MR 1231322 | Zbl 0777.65066
, 1993,[25] On the multi-level splitting of finite element spaces, Numer. Math., 49, 379-412. | MR 853662 | Zbl 0608.65065
, 1986,