@article{M2AN_1994__28_2_177_0, author = {Delvos, F.-J.}, title = {Approximation properties of periodic interpolation by translates of one function}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {28}, year = {1994}, pages = {177-188}, mrnumber = {1267197}, zbl = {0860.42003}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_1994__28_2_177_0} }
Delvos, F.-J. Approximation properties of periodic interpolation by translates of one function. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 28 (1994) pp. 177-188. http://gdmltest.u-ga.fr/item/M2AN_1994__28_2_177_0/
[1] Approximation by functions of nonclassical form. In Approximation Theory, Spline Functions and Applications, edited by S. P. Singh, NATO ASI Series C, 356, 1-18. | MR 1165960 | Zbl 0751.41001
, 1992,[2] Interpolation of odd periodic functions on uniform meshes. In Delay Equations, Approximation, and Applications (Eds. G. Meinardus, G. Nürnberger), ISNM 74, Birkhäuser Verlag, Basel. | MR 899092 | Zbl 0578.41012
, 1985,[3] Periodic interpolation on uniform meshes, Journal of Approximation Theory, 39, 71-80. | MR 906762 | Zbl 0664.41004
, 1987,[4] Convergence of interpolation on by translation, In Alfred Haar Mémorial Volume, Colloquia Mathematica Societatis Janos Bolyai, 49 273-287. | MR 899538 | Zbl 0638.42003
, 1985,[5] Approximation by periodic spline interpolation on uniform meshes, Journal of Approximation Theory, 1, 26-65. | MR 233121 | Zbl 0185.30901
, 1968,[6] An introduction to harmonic analysis, Dover, New York. | MR 422992 | Zbl 0352.43001
, 1976,[7] Approximation et optimisation. Hermann, Paris. | MR 467080 | Zbl 0238.90058
, 1972,[8] Interpolation on uniform meshes by translates of one function and related attenuation factors, Mathematics of Computation, 37, 403-416. | MR 628704 | Zbl 0517.42004
, 1981,[9] Zur Interpolationstheorie der reellen periodischen Funktionen, Preuβische Akademie der Wissenschaften (Math. Phys. Klasse), 30, 383-429. | JFM 65.0543.01
and , 1938,[10] Fourier Series, Dover, New York.
, 1976,