@article{M2AN_1994__28_2_123_0, author = {Miller, J. J. H. and Wang, Song}, title = {An analysis of the Scharfetter-Gummel box method for the stationary semiconductor device equations}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {28}, year = {1994}, pages = {123-140}, mrnumber = {1267195}, zbl = {0820.65089}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_1994__28_2_123_0} }
Miller, J. J. H.; Wang, Song. An analysis of the Scharfetter-Gummel box method for the stationary semiconductor device equations. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 28 (1994) pp. 123-140. http://gdmltest.u-ga.fr/item/M2AN_1994__28_2_123_0/
[1] Some Error Estimates for the Box Method, SIAM J. Numer. Anal., 24, No. 4, 1987, pp. 777-787. | MR 899703 | Zbl 0634.65105
, ,[2] Two-dimensional exponentially fitting and applications to semiconductor device equations, SIAM J. Numer. Anal., 26, 1989, pp. 1342-1355. | MR 1025092 | Zbl 0686.65088
, , ,[3] Finite-Element Analysis of Semiconductor Devices : The FIELDAY Program, IBM J. Res. Develop., 25, No. 4, 1981, pp. 218-231.
, , , ,[4] Sur la sphère vide, Izv. Akad. Nauk. SSSR, Math. and Nat. Sci. Div., No. 6, 1934, pp. 793-800. | Zbl 0010.41101
,[5] Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen, J. Reine Angew. Math., 40, No. 3, 1850, pp. 209-227. | Zbl 040.1103cj
,[6] A Self-Consistent Iterative Scheme for One-Dimensional Steady State Transistor Calculation, IEEE Trans. Elec. Dev., ED-11, 1964,pp. 455-465.
,[7] An Asymmetrical Finite Difference Network, Quart. Appl. Math., 11, 1953, pp. 295-310. | MR 57631 | Zbl 0053.26304
,[8] Inverse-Average-Type Finite Element Discretisations of Selfadjoint Second-Order Elliptic Problems, Math. Comp., 51,No. 184, 1988, pp. 431-449. | MR 930223 | Zbl 0699.65074
, ,[9] Discretization of the Semiconductor Device Equations from New Problems and New Solutions for Device and Process Modelling, ed. J.J.H. Miller, Boole Press, Dublin, 1985.
,[10] A Triangular Mixed Finite Element Method for the Stationary Semiconductor Device Equations, M2AN, 25, No. 4, 1991, pp. 441-463. | Numdam | MR 1108585 | Zbl 0732.65114
, ,[11] A New Non-conforming Petrov-Galerkin Finite Element Method with Triangular Elements for an Advection-Diffusion Problem, IMAJ. Num. Anal., to appear. | Zbl 0806.65111
, ,[12] Analysis of a Discretization Algorithm for Stationary Continuity Equations in Semiconductor Device Models, COMPEL, 2, No. 4, 1983, pp. 117-139. | Zbl 0619.65116
,[13] Analysis of a Discretization Algorithm for Stationary Continuity Equations in Semiconductor Device Models, II, COMPEL, 3, No. 3, 1984, pp. 137-149. | MR 782025 | Zbl 0619.65117
,[14] An Introduction to the Mathematical Theory of Finite Elements, John Wiley & Son, New York-London-Sydney-Toronto, 1976. | MR 461950 | Zbl 0336.35001
, ,[15] Large-signal analysis of a silicon read diode oscillator, IEEE Trans. Elec. Dev., ED-16, 1969, pp. 64-77.
, ,[16] Iterative Scheme for 1- and 2-Dimensional D. C.-Transistor, IEEE Trans. Elect. Dev. 24, 1977, pp. 1123-1125.
,[17] A Fast Lanczos-Type Solver for Nonsymmetric Linear Systems, SIAM J. Sci. Statist. Comput., 10, 1989, pp. 36-52. | MR 976160 | Zbl 0666.65029
, CGS,[18] Bi-CGSTAB : A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems, SIAM J. Sci. Stat. Comput., 13, No. 2, 1992, pp. 631-644. | MR 1149111 | Zbl 0761.65023
,[19] Theory of Flow of Electrons and Holes in Germanium and Other Semiconductors, Bell Syst. Tech. J., 29, 1950, pp. 560-607.
,[20] Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, New Jersey, 1962. | MR 158502 | Zbl 0133.08602
,