A new θ-scheme algorithm and incompressible FEM for viscoelastic fluid flows
Saramito, P.
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 28 (1994), p. 1-35 / Harvested from Numdam
Publié le : 1994-01-01
@article{M2AN_1994__28_1_1_0,
     author = {Saramito, P.},
     title = {A new $\theta $-scheme algorithm and incompressible FEM for viscoelastic fluid flows},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {28},
     year = {1994},
     pages = {1-35},
     mrnumber = {1259266},
     zbl = {0820.76051},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_1994__28_1_1_0}
}
Saramito, P. A new $\theta $-scheme algorithm and incompressible FEM for viscoelastic fluid flows. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 28 (1994) pp. 1-35. http://gdmltest.u-ga.fr/item/M2AN_1994__28_1_1_0/

[1] R. B. Bird, R. C. Amstrong and O. Hassager, Dynamics of Polymeric Liquid, vol. 1, Fluid Mechanics, 2nd ed. (1987) Wiley, New York.

[2] D. V. Boger, Annu. Rev. Fluid Mech., 19 (1987) 157 : 182.

[3] A. N. Brooks and T. J. R. Hughes, Streamline-Upwind/Petrov-Galerkin Formulation for Convection Dominated Flow with Particular Emphasis on the Incompressible Navier-Stokes Equations, Comp. Meth. in Appl. Mech. and Eng,, 32 (1982) pp. 199-259. | MR 679322 | Zbl 0497.76041

[4] M. J. Crochet and J. M. Marchal, A new mixed Finite Element for calculating Viscoelastic Flow, Journal of Non-Newtonian Fluid Mechanics, 26 (1987) pp. 77-114. | Zbl 0637.76009

[5] N. El Kissi, J. M. Piau and B. Tremblay, Low Reynolds number flow visualisation of linear and branched silicones upstream of orifices dies, Journal of Non-Newtonian Fluid Mechanics (1988).

[6] R. E. Evans and K. Walters, Flow characteristics associated with abrupt changes in geometry in the case of highly elastic liquid, Journal of Non-Newtonian Fluid Mechanics, 20 (1986) pp. 11-29.

[7] M. Fortin and A. Fortin, A new approach for the FEM simulation of viscoelastic flow, Journal of Non-Newtonian Fluid Mechanics, 32 (1989) pp. 295-310. | Zbl 0672.76010

[8] M. Fortin and R. Glowinski, Lagrangian Augmented Methods, (1981) North Holland.

[9] M. Fortin and R. Pierre, On the convergence of the mixed method of Crochet and Marchal for viscoelastic flow, (1989) Comput. Meth. in Appl. Mech. Eng. | MR 1016647 | Zbl 0692.76002

[10] V. Girault and P. A. Raviart, Finite Element Approximation of the Navier-Stokes Equations, Lecture Notes in Mathematics, 749, (1979) Springer Verlag. | MR 548867 | Zbl 0413.65081

[11] R. Glowinski and J. Périaux, Numerical Methods for Nonlinear Problems in Fluid Dynamics, Proceeding of the International Seminar on Scientific Super-computer, (1987) Feb 2-6. | MR 1026941 | Zbl 0666.76080

[12] J. B. Goodman and R. J. Leveque, On the accuracy of stable scheme for two dimensional conservation laws, Soc. Ind. Appl. Math. Numer. anal., 25 (1988)pp. 268-284. | MR 933724 | Zbl 0645.65051

[13] C. Guillopé and J. C. Saut, Global existence and one-dimensional non-linear stability of shearing motions of viscoelastic fluids of Oldroyd type, Modélisation Mathématique et Analyse Numérique, 24 (1990) pp. 369-401. | Numdam | MR 1055305 | Zbl 0701.76011

[14] C. Guillopé et J. C. Saut, Résultat d'existence pour les fluides viscoélastiques à loi de comportement de type différentiel, Compte-rendu de l'Académie des Sciences de Paris, 305, série I (1987) pp. 489-492. | MR 916317 | Zbl 0624.76008

[15] D. D. Joseph, M. Renardy and J. C. Saut, Hyperbolicity and Change of Type in the Flow of Viscoelastic Fluids, Arch. Ration. Mech. Anal, 87 (1985) pp. 213-251. | MR 768067 | Zbl 0572.76011

[16] R. Keunigs, Simulation of Viscoelastic Flow, in Fundamentals of Computer Modeling for Polymer Processing, C. L. Tucker III, Cari Hanser Verlag.

[17] P. Lesaint and P. A. Raviart, On finite element methods for solving the neutron transport equation (1974) Carl de Boor, Academic Press.

[18] X. L. Luo and R. I. Tanner, A Decoupled Finite Element Streamline-Upwind Scheme for Viscoelastic Flow Problems, J. of Non-Newtonian Fluid Mechanics, 31 (1989) pp. 143-162.

[19] J. G. Oldroyd, On the formulation of Rheological equation of states, Proc, Roy. Soc. London, A200 (1950) pp. 523-541. | MR 35192 | Zbl pre05542443

[20] D. W. Peaceman and H. H. Rachford, The numerical solution of parabolic and elliptic differential equations, J. Soc. Ind. Appl. Math., 3 (1955) pp. 28-41. | MR 71874 | Zbl 0067.35801

[21] M. Renardy, Existence of Slow Steady Flows of Viscoelastic Fluids with Differential Constitutive Equations, Z. Angew. Math, u Mech., 65 (1985) pp. 449-451. | MR 814684 | Zbl 0577.76014

[22] M. Renardy, Recent advances in the mathematical theory of steady flow of viscoelastic fluids, J. of Non-Newtonian Fluid Mechanics, 9 (1988) pp. 11-24. | Zbl 0666.76029

[23] J. E. Roberts and J. M. Thomas, Mixed and hybrid methods, in Handbook of Numerical Analysis, vol. 3, P. G. Ciarlet and J. L. Lions, North Holland, Amsterdam (Rapport de Recherche 737, INRIA 1987). | MR 1115239 | Zbl 0875.65090

[24] P. Saramito, Simulation numérique d'écoulements de fluides viscoélastiques par éléments finis incompressibles et une méthode de directions alternées ; applications, thèse de l'INPG (1990) Grenoble.

[25] J. E. Welch, F. H. Harlow, J. P. Shannon and B. J. Daly, The M.A.C. method, LASL report LA3425, Los Alamos Scientific Laboratory, 1965.