Analyse d'une formulation à trois champs du problème de Stokes
Sandri, D.
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 27 (1993), p. 817-841 / Harvested from Numdam
@article{M2AN_1993__27_7_817_0,
     author = {Sandri, D.},
     title = {Analyse d'une formulation \`a trois champs du probl\`eme de Stokes},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {27},
     year = {1993},
     pages = {817-841},
     mrnumber = {1249454},
     zbl = {0791.76008},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/M2AN_1993__27_7_817_0}
}
Sandri, D. Analyse d'une formulation à trois champs du problème de Stokes. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 27 (1993) pp. 817-841. http://gdmltest.u-ga.fr/item/M2AN_1993__27_7_817_0/

[1] I. Babuska, 1971, Error-bounds for finite element method, Numer. Math., 16, 322-333. | MR 288971 | Zbl 0214.42001

[2] J. Baranger, D. Sandri, 1992, Formulation of Stokes's problem and the linear elasticity equations suggested by Oldroyd model for viscoelastics flows, RAIRO ModéL Math. Anal Numér., 26, 331-345. | Numdam | MR 1153005 | Zbl 0738.76002

[3] F. Brezzi, 1974, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, RAIRO Modél. Math. Anal. Numér., 8, 129-151. | Numdam | MR 365287 | Zbl 0338.90047

[4] P. G. Ciarlet, 1978, The finite element method for elliptic problems, North-Holland, Amsterdam. | MR 520174 | Zbl 0383.65058

[5] M. Fortin, R. Pierre, 1989, On the convergence of the mixed method of Crochet and Marchal for viscoelastic flows, Comput. Methods Appl. Mech. Engrg., 73, 341-350. | MR 1016647 | Zbl 0692.76002

[6] V. Girault, P. A. Raviart, 1986, Finite element method for Navier-Stokes equations, Theory and Algorithms, Springer, Berlin Heidelberg New York. | MR 851383 | Zbl 0585.65077

[7] R. Keunings, 1989, in : Tucker Ch. III (éd.), Computer Modeling for Polymer Processing, 403-469. Munich: Hanser Verlag.

[8] J. M. Marchal, M. J. Crochet, 1987, A new finite element for calculating viscoelastic flow, J. Non-Newtonian Fluid Mech., 26, 77-114. | Zbl 0637.76009

[9] V. Ruas, An optimal three field finite element approximation of the Stokes system with continuous extra stresses, Japan Journal of Industrial and Applied Mathematics, à paraître. | Zbl 0797.76045

[10] K. Yoshida, 1980, Functional Analysis, Springer Verlag, Berlin Heidelberg New York.