Decision tree design by simulated annealing
Bucy, R. S. ; Diesposti, R. S.
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 27 (1993), p. 515-534 / Harvested from Numdam
Publié le : 1993-01-01
@article{M2AN_1993__27_5_515_0,
     author = {Bucy, R. S. and Diesposti, R. S.},
     title = {Decision tree design by simulated annealing},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {27},
     year = {1993},
     pages = {515-534},
     mrnumber = {1239814},
     zbl = {0784.90104},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_1993__27_5_515_0}
}
Bucy, R. S.; Diesposti, R. S. Decision tree design by simulated annealing. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 27 (1993) pp. 515-534. http://gdmltest.u-ga.fr/item/M2AN_1993__27_5_515_0/

[1] E. Aarts and J. Korst, 1989, Simulated Annealing and Boltzmann Machines, John Wiley and Sons. | MR 983115 | Zbl 0674.90059

[2] A. J. Bayes, 1973, A dynamic programming algorithm to optimize decision table code, Australian Computer Journal, 5, 77-79.

[3] L. Breiman, J. Friedman, R. Olshen and C. Stone, 1984, Classification and Regression Trees, EDMAN, R. OLSH Wadsworth Int. | MR 726392 | Zbl 0541.62042

[4] R. S. Bucy and R. S. Diesposti, 1991, Classification Tree Optimization by Simulated Annealing The Aerospace Corp., P.O. Box 92957, Los Angeles,California, USA 90009-2957, ATR No 91 (8073)-l.

[5] A. Corana, M. Marchesi, C. Martini, S. Ridella, 1987, Minimizing multimodal functions of continuous variables with the simulated annealing algorithm, ACM Trans, on Mathematical Software, 13, 262-280. | MR 918580 | Zbl 0632.65075

[6] G. Dewey, 1950, Relative Frequency of English Speech Sounds, Harvard University Press.

[7] A. El Gamal, L. Hemachandra, I. Shperling and V. Wei, 1987, Using simulated annealing to design good codes, IEEE Trans. on Information Theory 33, 116-123.

[8] R. G. Gallager, 1968, Information Theory and Reliable Communication, John Wiley and Sons. | Zbl 0198.52201

[9] M. R. Garey, 1970, Optimal Binary Decision Trees for Diagnostic Identification Problems, Ph. D. Thesis, Univ. of Wisconsin.

[10] M. R. Garey and R. L. Graham, 1974, Performance bounds on the splitting algorithm for binary testing, Acta Informatica, 3, 347-355. | Zbl 0276.68023

[11] C. R. P. Hartmann, P. K. Varshney, K. G. Mehrotra and C. L. Gerberich, 1982, Application of information theory to the construction of efficient decision trees, IEEE Trans, on Information Theory, 28, 565-577. | Zbl 0483.68064

[12] J. A. Herrera-Ball, 1988, Theoretical Foundations and Algorithms for the Generation of Optimal Decision Trees, Ph. D. Thesis, Univ. of Tennessee.

[13] S. Kirkpatrick, C. D. Jr. Gelatt and M. P. Vecchi, 1983, Optimization by simulated annealing, Science, 220, 671-680. | MR 702485

[14] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller and E. Teller, 1953, Equation of state calculation by fast Computing machines, J. of Chem. Physics, 21, 1087-1092.

[15] B. Moret, 1982, Decision trees and diagrams, Computing Surveys 14, 593-623.

[16] O. Murphy, 1990, A unifying framework for trie design heuristics, Information Processing Letters 34, 243-249. | MR 1059987 | Zbl 0696.68035

[17] L. T. Reinwald, R. M. Soland, 1966, Conversion of limited entry décision tables to optimal computer programs I : minimum average processing time, J.Ass. Comput. Mach. 13, 339-358. | Zbl 0173.19505