A boundary element procedure for contact problems in plane linear elastostatics
Gwinner, J. ; Stephan, E. P.
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 27 (1993), p. 457-480 / Harvested from Numdam
Publié le : 1993-01-01
@article{M2AN_1993__27_4_457_0,
     author = {Gwinner, J. and Stephan, E. P.},
     title = {A boundary element procedure for contact problems in plane linear elastostatics},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {27},
     year = {1993},
     pages = {457-480},
     mrnumber = {1230830},
     zbl = {0773.73096},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_1993__27_4_457_0}
}
Gwinner, J.; Stephan, E. P. A boundary element procedure for contact problems in plane linear elastostatics. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 27 (1993) pp. 457-480. http://gdmltest.u-ga.fr/item/M2AN_1993__27_4_457_0/

[1] I. Babuška and A. K. Aziz, Survey lectures on the mathematicalformulation ofthe finite element method, in The Mathematical Foundation of the Finite Element Method (A. K. Aziz, ed.) Academic Press, New York, 1972, pp. 3-359. | MR 421106 | Zbl 0268.65052

[2] M. Costabel, Boundary integral operators on Lipschitz domains : Elementary results, SIAM J. Math. Anal. 19, 1988, pp. 613-626. | MR 937473 | Zbl 0644.35037

[3] R. Dautray and J.L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 4, Integral Equations and Numerical Methods, Springer, Berlin, 1990. | MR 1081946

[4] G. Duvaut and J. L. Lions, Inequalities in Mechanics and Physics, Springer, Berlin, 1976. | MR 521262 | Zbl 0331.35002

[5] J. Elschner, On spline approximation for a class of integral equations, I : Galerkin and collocation methods with piecewise polynomials, Math. Methods in the Applied Sciences 10, 1988, pp. 543-559. | MR 965421 | Zbl 0662.65112

[6] H. Engels, Numerical Quadrature and Cubature, Academic Press, New York, 1980. | MR 587486 | Zbl 0435.65013

[7] G. I. Èskin, Boundary Value Problems for Elliptic Pseudodifferential Equations, Translations of Mathematical Monographs, Vol. 52, American Mathematical Society, Providence, 1981. | MR 623608 | Zbl 0458.35002

[8] G. Fichera, Boundary value problems of elasticity with unilateral constraints, in Handbuch der Physik - Encyclopedia of Physics, Band VI a/2 Festkörper-mechanikll, Springer, Berlin, 1972, pp. 391-424.

[9] R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer, New York, 1984. | MR 737005 | Zbl 0536.65054

[10] R. Glowinski, J. L. Lions and R. Trémolières, Numerical Analysis ofVariational Inequalities, North-Holland, Amsterdam, 1981. | MR 635927 | Zbl 0463.65046

[11] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985. | MR 775683 | Zbl 0695.35060

[12] J. Gwinner, Discretization of semicoercive variational inequalities, Aequationes Mathematicae 42, 1991, pp. 72-79. | MR 1112184 | Zbl 0739.65058

[13] G. Hämmerlin and K. H. Hoffmann, Numerische Mathematik, Springer, 1989. | MR 1305149 | Zbl 0669.65001

[14] H. Han, A direct boundary element method for Signorini problems, Math. Computation 55, 1990, pp.115-128. | MR 1023048 | Zbl 0705.65084

[15] I. Hlavaček, J. Haslinger, J. Nečas and J. Lovišek, Solution of Variational Inequalities in Mechanics, Springer, Berlin, 1988. | MR 952855 | Zbl 0654.73019

[16] I. Hlavaček and J. Lovišek, A finite element analysis for the Signorini problem in plane elastostatics, Aplikace Mat. 22, 1977, pp. 215-228. | MR 446014 | Zbl 0369.65031

[17] G. C. Hsiao, E. P. Stephan, W. L. Wendland, On the Dirichlet problem in elasticity for a domain exterior to an arc, J. Computational Appl. Mathematics 34, 1991, pp. 1-19. | MR 1095192 | Zbl 0742.73026

[18] N. Kikuchi and J. T. Oden, Contact Problems in Elasticity : a Study ofariational Inequalities and Finite Element Methods, SIAM, Philadelphia, 1988. | MR 961258 | Zbl 0685.73002

[19] V.A. Kondratiev and O.A. Oleinik, On Korn's inequalities, C.R. Acad. Sci. Paris I 308, 1989, pp. 483-487. | MR 995908 | Zbl 0698.35067

[20] V. D. Kupradze, Potential Methods in the Theory of Elasticity, Israël Program for Scientific Translations, Jerusalem, 1965. | MR 223128 | Zbl 0188.56901

[21] V. D. Kupradze, T. G. Gegelia, M. O. Basheleishvili and T. V. Urchuladze, Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, North-Holland, Amsterdam, 1979. | MR 530377 | Zbl 0406.73001

[22] N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of lasticity, Noordhoff, Groningen, 1963. | MR 176648 | Zbl 0124.17404

[23] J. Nečas, Les méthodes directes en théorie des équations elliptiques, Academia, Masson, Prague, Paris, 1967. | MR 227584

[24] J. C. Nedelec, Approximation des Équations Intégrales en Mécanique et en Physique, Lecture Notes, Centre Math. Appl., École polytechnique, Palaiseau, France 1977.

[25] J. C. Nedelec, Integral equations with non integrable kernels, Integral Equations and Operator Theory 5, 1982, pp. 562-582. | MR 665149 | Zbl 0479.65060

[26] J. A. Nitsche, On Korn's second inequality, R.A.I.R.O. Anal. Numér. 15, 1981, pp. 237-248. | Numdam | MR 631678 | Zbl 0467.35019

[27] P. D. Panagiotopoulos, Inequality Problems in Mechanics and Applications, Birkhauser, Basel, 1985. | MR 896909 | Zbl 0579.73014

[28] P. D. Panagiotopoulos, Boundary integral « equation » methods for the Signorini-Fichera problem, in Boundary Elements 7, vol. 2, exp. No. 12, 1985, pp. 73-83. | MR 948223 | Zbl 0599.73117

[29] R. Sauer, Anfangswertprobleme bei partiellen Dijferentialgleichungen, Springer, Berlin, 1952. | MR 52009 | Zbl 0046.31902

[30] A. Signorlni, Sopra alcune questioni di elastostatica, Atti délia Società Italiana per il Progresso della Scienze, 1933. | JFM 59.1413.02

[31] W. L. Wendland, On some mathematical aspects of boundary elementmethods for elliptic problems, in MAFELAP V (J. R. Whiteman, éd.), Academic Press, New York, 1985, pp. 193-227. | MR 811035 | Zbl 0587.65079

[32] W. L. Wendland and E. P. Stephan, A hypersingular boundary integral method for two-dimensional screen and crack problems, Arch. Rational Mech. Anal 112, 1990, pp. 363-390. | MR 1077265 | Zbl 0725.73091