Homogenization and effective properties of plates weakened by partially penetrating fissures : convergence and duality
Telega, J. J.
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 27 (1993), p. 421-456 / Harvested from Numdam
Publié le : 1993-01-01
@article{M2AN_1993__27_4_421_0,
     author = {Telega, J. J.},
     title = {Homogenization and effective properties of plates weakened by partially penetrating fissures : convergence and duality},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {27},
     year = {1993},
     pages = {421-456},
     mrnumber = {1230829},
     zbl = {0773.73007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_1993__27_4_421_0}
}
Telega, J. J. Homogenization and effective properties of plates weakened by partially penetrating fissures : convergence and duality. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 27 (1993) pp. 421-456. http://gdmltest.u-ga.fr/item/M2AN_1993__27_4_421_0/

[1] T. Lewiński, J. J. Telega, Homogenization and effective properties of plates weakened by partially penetrating fissures : asymptotic analysis, Int. J. Eng. Sci., 9, 1991, pp. 1129-1155. | MR 1124050 | Zbl 0759.73004

[2] J. J. Telega, Homogenization of fissured elastic solids in the presence of unilateral conditions and friction, Comp. mech., 6, 1990, pp. 109-127. | Zbl 0723.73010

[3] H. Attouch, Variational Convergence for Functions and Operators, Pitman, London, 1984. | MR 773850 | Zbl 0561.49012

[4] J. J. Telega, Variational methods and convex analysis in contact problems and homogenization, IFTR Reports No. 38/90, Warsaw 1990, in Polish.

[5] H. Attouch, Variational properties of epi-convergence. Applications of limit analysis problems in mechanics and duality theory, in : Multifunctions and Integrands, ed. by G. Salinetti, Lecture Notes in Mathematics, Vol.1091, 1984, pp. 80-104, Springer-Verlag, Berlin. | MR 785577

[6] H. Attouch, Epi-convergence and duality. Convergence of sequence ofmarginal and Lagrangian functions. Applications to homogenization problemsin mechanics, Publications AVAMAC, Université de Perpignan, No. 84-11, 1984. | Zbl 0588.49015

[7] G. Buttazzo, Semicontinuity, Relaxation and Integral Representation Problems in the Calculus of Variations, Pitman, London, 1988. | Zbl 0669.49005

[8] G. Bouchitté, Calcul des variations en cadre non réflexif. Représentation et relaxation de fonctionnelles intégrales sur un espace de mesures. Application enplasticité et homogénéisation, Thèse d'Etat, Université de Perpignan, 1987.

[9] A. Ambrosetti, C. Sbordone, Г-convergenza e G-convergenza per problemi di tipo ellitico, Boll. Un. Mat. Ital.,13-A, 1976, pp. 352-362. | MR 487703 | Zbl 0345.49004

[10] P. J. Laurent, Approximation et Optimisation, Herrmann, Paris, 1972. | MR 467080 | Zbl 0238.90058

[11] H. Attouch, D. Azé, R. J. B. Wets, Convergence of convex-concave saddle functions : continuity properties of the Legendre-Fenchel transform with applications to convex programming and mechanics, Publications AVAMAC, Université de Perpignan, No. 85-08, 1985.

[12] D. Azé, Epi-convergence et dualité. Application à la convergence des variables primales et duales pour des suites de problèmes d'optimisation convexe, Publications AVAMAC, Université de Perpignan, No. 84-12, 1984.

[13] D. Azé, Convergence des variables duales dans des problèmes de transmission à travers des couches minces par des méthodes d'épi-convergence, Ric. di Mat., 35, 1986, pp. 125-159. | MR 889865 | Zbl 0611.49006

[14] I. Ekeland, R. Temam, Convex Analysis and Variational Problems, North Holland, Amsterdam, 1976. | MR 463994 | Zbl 0322.90046

[15] G. Bouchitté, P. Suquet, Charges limites, plasticité et homogénéisation : le cas d'un bord chargé, C. R. Acad. Sci. Paris, Série I, 305, 1987, pp. 441-444. | MR 916348 | Zbl 0658.73021

[16] J. J. Telega , Perfectly plastic plates loaded by boundary bending moments : relaxations and homogenization, Arch. Mech., 43, 1991, pp. 711-737. | MR 1174594 | Zbl 0756.73010

[17] H. Attouch, F. Murat, Homogenization of fissured elastic materials, Publications AVAMAC, Université de Perpignan, No. 85-03, 1985.

[18] G. Duvaut, Cours sur les méthodes variationnelles et la dualité, in : Duality and Complementarity in Mechanics of Solids, éd. by A. Borkowski, 1979, pp. 173-272, Ossolineum, Wroclaw. | MR 560095

[19] E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Springer-Verlag, Berlin, 1980. | Zbl 0432.70002

[20] J. J. Telega, T. Lewiński, Homogenization of fissured Reissner-like plates, Part II: Convergence, Arch. Mech., 40, 1988, pp. 119-134. | MR 1002823 | Zbl 0702.73005

[21] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970. | MR 274683 | Zbl 0193.18401