@article{M2AN_1993__27_1_9_0, author = {Chen, Zhangxin}, title = {Analysis of mixed methods using conforming and nonconforming finite element methods}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {27}, year = {1993}, pages = {9-34}, mrnumber = {1204626}, zbl = {0784.65075}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_1993__27_1_9_0} }
Chen, Zhangxin. Analysis of mixed methods using conforming and nonconforming finite element methods. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 27 (1993) pp. 9-34. http://gdmltest.u-ga.fr/item/M2AN_1993__27_1_9_0/
[1] A new formulation of mixed finite element methods for second order elliptic problems (to appear).
,[2] Mixed and nonconforming finite element methods : implementation postprocessing and error estimates, RAIRO Model. Math. Anal Numér., 19 (1985), pp 7-32. | Numdam | MR 813687 | Zbl 0567.65078
and ,[3] Two families of mixed finite elements for second order elliptic problems, Numer Math., 47 (1985), pp 217-235. | MR 799685 | Zbl 0599.65072
, and ,[4] On the relationship between mixed and Galerkin finite element methods, Ph. D. thesis, Purdue University, West Lafayette, Indiana, August (1991).
,[5] Hybrid and Mixed Finite Element Methods, to appear.
and ,[6] The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. | MR 520174 | Zbl 0383.65058
,[7] Global estimates for mixed methods for second order elliptic problems, Math. Comp., 45 (1985), pp 39-52. | MR 771029 | Zbl 0624.65109
and ,[8] Error estimates for mixed methods, RAIRO, Model. Math. Anal. Numér., 14 (1980), pp 249-277. | Numdam | MR 592753 | Zbl 0467.65062
and ,[9] A non-conforming piecewise quadratic finite element on triangles, Internat. J. Numer. Methods Engrg., 19 (1983), pp 505-520. | MR 702056 | Zbl 0514.73068
and ,[10] Displacement and equilibrium models in the finite element method, in Stress Analysis, O. C. Zienkiewicz and G. Hohste (eds.), John Wiley, New York, 1965.
,[11] An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method, SIAM J. Numer. Anal., 22 (1985), pp 493-496. | MR 787572 | Zbl 0573.65082
,[12] An abstract theory for mixed approximations of second order elliptic problems, Mat. Apl. Comput., 8 (1989), pp 219-239. | MR 1067287 | Zbl 0711.65091
and ,[13] A mixed finite element method for second order elliptic problems, in Mathematical Aspects of the Finite Element Method, Lecture Notes in Math. 606, Springer-Verlag, Berlin and New York (1977), pp 292-315. | MR 483555 | Zbl 0362.65089
and ,