@article{M2AN_1993__27_1_55_0, author = {Bales, L. A.}, title = {Semidiscrete and single step fully discrete finite element approximations for second order hyperbolic equations with nonsmooth solutions}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {27}, year = {1993}, pages = {55-63}, mrnumber = {1204628}, zbl = {0766.65082}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_1993__27_1_55_0} }
Bales, L. A. Semidiscrete and single step fully discrete finite element approximations for second order hyperbolic equations with nonsmooth solutions. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 27 (1993) pp. 55-63. http://gdmltest.u-ga.fr/item/M2AN_1993__27_1_55_0/
[1] Semidiscrete and single step fully discrete approximations for second order hyperbolic equations, RAIRO Modél. Math. Anal. Numer., V. 13, 1979, pp. 75-100. | Numdam | MR 533876 | Zbl 0405.65057
and[2] Finite element computations for second order hyperbolic equations with nonsmooth solutions, Comm. in App. Num. Meth., V. 5, 1989, pp. 383-388. | Zbl 0679.65086
,[3] Higher order local accuracy by averaging in the finite element method, Math. Comp., V. 31, 1977, pp. 94-111. | MR 431744 | Zbl 0353.65064
and ,[4] On the convergence of Galerkin approximation schemas for second-order hyperbolic equations in energy and negative norms, Math. Comp., V. 42, 1984, pp.393-415. | MR 736443 | Zbl 0553.65082
,[5] An analysis of some finite element methods for advection-diffusion problems, in Analytical and Numerical Approaches to Asymptotic Problems in Analysis, L. S. Frank and A. van der Sluis (Eds), North-Holland, 1981, pp. 99-116. | MR 605502 | Zbl 0455.76081
and ,[6] The computation of discontinuous solutions of linear hyperbolic equations, Comm Pure Appl. Math., V. 31, 1978, pp. 423-430. | MR 468216 | Zbl 0362.65075
and ,[7] Galerkin Finite Methods for Parabolic Problems, Springer-Verlag, 1984. | MR 744045 | Zbl 0528.65052
,