Uniform convergence of mixed interpolated elements for Reissner-Mindlin plates
Peisker, P. ; Braess, D.
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 26 (1992), p. 557-574 / Harvested from Numdam
@article{M2AN_1992__26_5_557_0,
     author = {Peisker, P. and Braess, D.},
     title = {Uniform convergence of mixed interpolated elements for Reissner-Mindlin plates},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {26},
     year = {1992},
     pages = {557-574},
     mrnumber = {1177387},
     zbl = {0758.73050},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_1992__26_5_557_0}
}
Peisker, P.; Braess, D. Uniform convergence of mixed interpolated elements for Reissner-Mindlin plates. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 26 (1992) pp. 557-574. http://gdmltest.u-ga.fr/item/M2AN_1992__26_5_557_0/

[1] D. N. Arnold & R. S. Falk, A uniformly accurate finite element method for the Mindlin-Reissner plate, SIAM J. Numer. Anal. 26, 1276-1290 (1989). | MR 1025088 | Zbl 0696.73040

[2] K. J. Bathe & F. Brezzi, On the convergence of a four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation. In Proceeding Conf. on Mathematics of Finite Elements and Applications 5 (J. R. Whiteman, ed.), Academic Press 1985, pp. 491-503. | MR 811058 | Zbl 0589.73068

[3] K. J. Bathe, F. Brezzi & S. W. Cho, The MITC7 and MITC9 plate bending elements, J. Computers & Structures 32, 797-814 (1989). | Zbl 0705.73241

[4] K. J. Bathe & E. N. Dvorkin, A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation, Int. J. Num. Meth. Eng. 21, 367-383 (1985). | Zbl 0551.73072

[5] F. Brezzi, K. J. Bathe & M. Fortin, Mixed-interpolated elements for Reissner-Mindlin plates, Int J. Num. Meth. Eng. 28, 1787-1801 (1989). | MR 1008138 | Zbl 0705.73238

[6] F. Brezzi, J. Jr. Douglas, M Fortin & L. D. Marini, Efficient rectangular mixed finite elements in two and three space variables. RAIRO Model. Math. Anal. Numér. 21, 581-604 (1987). | Numdam | MR 921828 | Zbl 0689.65065

[7] F. Brezzi, J. Jr. Douglas, &L. D. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math. 47, 217-235 (1985). | MR 799685 | Zbl 0599.65072

[8] F. Brezzi & M. Fortin, Numerical approximation of Mindlin-Reissner plates, Math. Comp. 47, 151-158 (1986). | MR 842127 | Zbl 0596.73058

[9] F. Brezzi & J. Pitkäranta, On the stabilization of finite element approximations of the Stokes equations. In « Efficient Solutions of Elliptic Systems » (W. Hackbusch, ed.), Vieweg, Braunschweig 1984, 11-19. | MR 804083 | Zbl 0552.76002

[10] P. G. Ciarlet, The Finite Element Method for Elliptic Problems. North Holland 1978. | MR 520174 | Zbl 0383.65058

[11] J. Jr. Douglas & J. E. Roberts, Global estimates for mixed methods for second order elliptic equations, Math. Comp. 44, 39-52 (1985). | MR 771029 | Zbl 0624.65109

[12] L. P. Franca & R. Stenberg, A modification of a low order Reissner-Mindlin plate bending element. Rapport de Recherche No 1084 INRIA-Rocquencourt, France, 1989.

[13] V. Girault & P. A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, Berlin, 1986. | MR 851383 | Zbl 0585.65077

[14] Z. Huang, A multi-grid algorithm for mixed problems with penalty, Math. 57, 227-247 (1990). | MR 1057122 | Zbl 0712.73106

[15] P. A. Raviart & J. M. Thomas, A mixed finite element method for second order elliptic problems In « Mathematical Aspects of Finite Element Methods » (I. Galligani and E. Magenes, eds.), pp 292-315, Springer Verlag 1977. | MR 483555 | Zbl 0362.65089

[16] L. R. Scott & M. Vogelius, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. RAIRO Model. Math. Anal. Numér. 19, 111-143 (1985). | Numdam | MR 813691 | Zbl 0608.65013

[17] F. Brezzi & M. Fortin, Mixed and Hybrid Finite Elements, Springer Verlag 1991. | MR 1115205