@article{M2AN_1992__26_2_331_0, author = {Baranger, J. and Sandri, D.}, title = {A formulation of Stokes's problem and the linear elasticity equations suggested by the Oldroyd model for viscoelastic flow}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {26}, year = {1992}, pages = {331-345}, mrnumber = {1153005}, zbl = {0738.76002}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_1992__26_2_331_0} }
Baranger, J.; Sandri, D. A formulation of Stokes's problem and the linear elasticity equations suggested by the Oldroyd model for viscoelastic flow. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 26 (1992) pp. 331-345. http://gdmltest.u-ga.fr/item/M2AN_1992__26_2_331_0/
[1] A Family of Higher Order Mixed Finite Element Methods for Plane Elasticity, Numer. Math., 45, 1-22 (1984). | MR 761879 | Zbl 0558.73066
, and ,[2] Error-bounds for Finite Element Method, Numer. Math., 16, 322-333 (1971). | MR 288971 | Zbl 0214.42001
,[3] On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, RAIRO Model. Math. Anal. Numér., 8, 129-151 (1974). | Numdam | MR 365287 | Zbl 0338.90047
,[4] The Finite Element Method for Elliptic Problems, North-Holland (1978). | MR 520174 | Zbl 0383.65058
,[5] Approximation by finite elements using local regularization, RAIRO Modél. Math. Anal. Numér., 8, 77-84 (1975). | Numdam | MR 400739 | Zbl 0368.65008
,[6] An absolutely stabilized finite element method for the Stokes problem, quoted in [12]. | Zbl 0669.76051
and ,[7] A new approach for the FEM simulation of viscoelastic flows, J. Non-Newtonian Fluid Mech., 32, 295-310 (1989). | Zbl 0672.76010
and ,[8] On the convergence of the mixed method of Crochetand Marchal for viscoelastic flows, to appear. | MR 1016647 | Zbl 0692.76002
and ,[9] Analysis and finite element approximation of compressible and incompressible linear isotropic elasticity based upon a variational principle, Comp. Meth. Appl. Mech. Engrg., 76, 259-273 (1989). | MR 1030385 | Zbl 0688.73044
,[10] Two classes of mixed finite element methods, Comp. Meth. Appl. Mech. Engrg., 69, 89-129 (1988). | MR 953593 | Zbl 0629.73053
and ,[11] Finite element approximation of a new variational principle for compressible and incompressible linear isotropic elasticity, to appear in Appl. Mech. Rev. | MR 1037580 | Zbl 0749.73076
, ,[12] Error analysis of some Galerkin-least-squares methods for the elasticity equations, Rapport INRIA, n° 1054 (1989). | Zbl 0759.73055
and ,[13] Finite Element Methods for Navier-Stokes Equations, Theory and algorithms, Springer Berlin (1978). | MR 851383 | Zbl 0585.65077
and ,[14] A new mixed finite element for calculating viscoelastic flow, J. Non-Newtonian Fluid Mech., 26, 77-114 (1987). | Zbl 0637.76009
and ,[15] Norm estimates for a maximal right inverse ofthe divergence operator in spaces of piecewise polynomials, RAIRO Modél. Math. Anal. Numér., 19, 111-143 (1985). | Numdam | MR 813691 | Zbl 0608.65013
and ,[16] A Family of Mixed Finite Elements for the Elasticity Problem, Num. Math., 53, 513-538 (1988). | MR 954768 | Zbl 0632.73063
,[17] Error Analysis of some Finite Element Methods for the Stokes Problem, to appear. | MR 1010601 | Zbl 0702.65095
,