@article{M2AN_1992__26_1_95_0, author = {Chuang, J.-H. and Hoffmann, Ch. M.}, title = {Curvature computations on surfaces in $n$-space}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {26}, year = {1992}, pages = {95-112}, mrnumber = {1155002}, zbl = {0752.65104}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_1992__26_1_95_0} }
Chuang, J.-H.; Hoffmann, Ch. M. Curvature computations on surfaces in $n$-space. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 26 (1992) pp. 95-112. http://gdmltest.u-ga.fr/item/M2AN_1992__26_1_95_0/
[1] An Algorithm for Piecewise Linear Approximation of Implicity Defined 2-Dimensional Surfaces, SIAM J. Num. Anal. 24, 452-469. | MR 881376 | Zbl 0618.65006
and (1987),[2] Gröbner Bases : An Algorithmic Method in Polynomial Ideal Theory, in Multidimensional Systems Theory, N.L. Bose, éd., D. Reidel Publishing Co., Dordrecht, Holland; 184-232. | MR 835951 | Zbl 0587.13009
(1985),[3] Algebraic Methods for Geometric Reasoning, Ann. Rev. Comp. Sci, 3, 85-120. | MR 1001203
, and (1988),[4] On the Theory of Elimination, Cambridge and Dublin Math. J. 3, 116-120.
(1848),[5] Base Points, Resultants, and the Implicit Representation of Rational Surfaces, PhD Diss., Comp. Sci., Univ. Waterloo, Canada.
(1990),[6] Variable Radius Blending with Cyclides, in Geometric Modeling for Product Engineering, K. Preiss, J. Turner, M.Wozny, eds., North Holland, 39-58.
, (1990),[7] Constant Scallop Height Tool Path Generation, Rept. UUCS-89-011, Comp. Sci., Univ. Utah.
, (1989),[8] Surface Approximations in Geometric Modeling, PhD Diss., Comp. Sci., Purdue University.
(1990),[9] On Local Implicit Approximation and lts Applications, ACM Trans. Graphics 8, 298-324. | Zbl 0746.68091
and (1989),[10] Computing offsets of B-spline curves, Comput. Aided Design 19, 305-309. | Zbl 0655.65021
(1987),[11] A Geometric Investigation of the Skeleton of CSG Objects, Report CSD-TR-955, Comp. Sci., Purdue Univ.
and (1990),[12] The Approximation of Nondegenerate Offset Surfaces, Comp. Aided Geom. Design 3, 15-43. | Zbl 0621.65003
(1986),[13] Some Analytic and Algebraic Properties of Plane Offset Curves, Rept. RC 14364, IBM Yorktown Heights. | MR 1074602
and (1989),[14] Geometric and Solid Modeling, An Introduction, Morgan Kaufmann Publ., San Mateo, Cal.
(1989),[15] A Dimensionality Paradigm for Surface Interrogation, to appear in Comput. Aided Geom. Design. | MR 1079400 | Zbl 0712.65010
(1990),[16] Algebraic and Numerical Techniques for Offsets and Blends, in Computations of Curves and Surfaces, W. Dahmen, M. Gasca,C. Micchelli, eds., Kluwer Acad. Publ., 499-528. | MR 1064970 | Zbl 0705.68102
(1990),[17] Programming with Equations, ACM Trans. Progr. Lang 4, 83-112. | Zbl 0481.68008
and (1982),[18] Offset curves in the plane, Comput. Aided Design 17, 11-82.
(1985),[19] Spline approximation of offset curves, Comput. Aided Geom. Design 5, 33-40. | MR 945304 | Zbl 0647.65007
(1988),[20] A geometrical method for smooth joining and interpolation of curves and surfaces, Comput. Aided Geom. Design 7. | MR 1074610
, , (1990),[21] Elementary Differential Geometry, Academic Press. | MR 203595 | Zbl 0971.53500
(1966),[22] Offset approximation of uniform B-splines, Comput. Aided Design 20, 411-414. | Zbl 0656.65010
(1988),[23] Exact second order continuous interactive surface blending with variable sweep Geometric modeling, J. Offshore Mech. Aretic Engrg.
(1988),[24] A Simple Practical Criterion to Guarantee Second-Order Smoothness of Blend Surfaces, Proc. 1989 ASME Design Autom. Conf-, Montreal, Canada.
and (1989),[25] Offsetting operationsin solid modeling, Comput. Aided Geom. Design 3, 129-148. | Zbl 0631.65144
, (1986),[26] Offsetting in geometric modeling, Comput. Aided Design 20, 67-74. | Zbl 0656.65015
, , (1988),