@article{M2AN_1991__25_6_671_0, author = {Anderssen, R. S. and de Hoog, F. R. and Wahlbin, L. B.}, title = {On pointwise stability of cubic smoothing splines with nonuniform sampling points}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {25}, year = {1991}, pages = {671-692}, mrnumber = {1135989}, zbl = {0758.41012}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_1991__25_6_671_0} }
Anderssen, R. S.; de Hoog, F. R.; Wahlbin, L. B. On pointwise stability of cubic smoothing splines with nonuniform sampling points. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 25 (1991) pp. 671-692. http://gdmltest.u-ga.fr/item/M2AN_1991__25_6_671_0/
[1] A Practical Guide to Splines, Springer, New York, 1978. | MR 507062 | Zbl 0406.41003
,[2] Smoothest curve approximation, Math. Comp. 11, 1957, 233-243. | MR 93894 | Zbl 0084.34904
,[3] Convergence of kernel functions for cubic smoothing splines on non-equispaced grids, Austral. J. Statist. 30A, 1988, 90-99. | Zbl 0681.41006
and ,[4] Smoothing by spline functions, Numer. Math. 10, 1967, 177 183. | MR 295532 | Zbl 0161.36203
,[5] Spline functions and the problem of graduation, Proc. Nat. Acad, Sci. 52, 1964, 947-950. | MR 167768 | Zbl 0147.32102
,[6] Spline smoothing : the equivalent variable kernel method, Ann. Statist. 12, 1984, 898-916. | MR 751281 | Zbl 0547.62024
,[7] On a new method of graduation, Proc. Edinburgh Math. Soc. 41, 1923, 63-75.
,