@article{M2AN_1991__25_1_49_0, author = {Caloz, Gabriel}, title = {Approximation by finite element method of the model plasma problem}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {25}, year = {1991}, pages = {49-65}, mrnumber = {1086840}, zbl = {0712.76069}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_1991__25_1_49_0} }
Caloz, Gabriel. Approximation by finite element method of the model plasma problem. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 25 (1991) pp. 49-65. http://gdmltest.u-ga.fr/item/M2AN_1991__25_1_49_0/
[1] Finite element approximation of the plasma problem, To appear. | Zbl 0681.76114
, ,[2] Simulation numérique des équilibres d'un plasma dans un tokamak : modélisation et études mathématiques, Thése n° 650, EPF, Lausanne, 1986.
,[3] The finite element method for elliptic problems, North-Holland, Amsterdam, 1978. | MR 520174 | Zbl 0383.65058
,[4] On numerical approximation in bifurcation theory, RMA 13, Masson, Paris, 1989. | MR 1069945 | Zbl 0687.65057
, ,[5] Variational principles and free boundary problems, Wiley, New York, 1982. | MR 679313 | Zbl 0564.49002
,[6] Finite element methods for Navier-Stokes equations, Springer-Verlag, Berlin, 1986. | MR 851383 | Zbl 0585.65077
, ,[7] Behavior of the solutions of an elliptic boundary value problem in a polygonal or polyhedral domain, Numerical solution of partial differential equations, B. Hubbard (ed.) (1976), pp. 207-274. | MR 466912 | Zbl 0361.35022
,[8] Finite element approximation of a nonlinear eigenvalue problem related to MHD equilibria, Japan J. Appl. Math., 1 (1984), pp. 369-403. | MR 840803 | Zbl 0634.76117
, , ,[9] Strong derivatives and inverse mappings, Amer. Math. Monthly, 81 (1974), pp. 969-980. | MR 360958 | Zbl 0296.58002
,[10] Approximation of a nondifferentiable nonlinear problem related to MHD equilibria, Numer. Math., 45 (1984), pp. 117-133. | MR 761884 | Zbl 0527.65073
,[11] A nonlinear eigenvalue problem: equilibrium shape of a confined plasma, Arch. Rat. Mech. Anal., 60 (1975), pp. 51-73. | MR 412637 | Zbl 0328.35069
,