Une méthode multigrille pour la solution des problèmes d'obstacle
Hoppe, Ronald H. W.
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 24 (1990), p. 711-735 / Harvested from Numdam
@article{M2AN_1990__24_6_711_0,
     author = {Hoppe, Ronald H. W.},
     title = {Une m\'ethode multigrille pour la solution des probl\`emes d'obstacle},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {24},
     year = {1990},
     pages = {711-735},
     mrnumber = {1080716},
     zbl = {0716.65056},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/M2AN_1990__24_6_711_0}
}
Hoppe, Ronald H. W. Une méthode multigrille pour la solution des problèmes d'obstacle. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 24 (1990) pp. 711-735. http://gdmltest.u-ga.fr/item/M2AN_1990__24_6_711_0/

[1] R. Boyer , B. Martinet, Multigrid methods in convex optimization, dans : Multigrid Methods : special topics and Applications, 2nd European Conference on Multigrid Methods, Cologne, October 1-4, 1985 (eds.: U. Trottenberg, W, Hackbusch), p. 27-37, GMD-Studien Nr. 110, St. Augustin, 1986. | MR 1043879 | Zbl 0593.65041

[2] A. Brandt , C. W. Cryer, Multi-grid algorithms for the solution of linear complementarity problems arising from free boundary problems, SIAM J. Sci. Stat. Comput. 4, 655-684 (1983). | MR 725660 | Zbl 0542.65060

[3] F. Brezzi, L. A. Caffarelli, Convergence of the discrete free boundaries fo finite element approximations, RAIRO Analyse numérique/Numerical analysis 17, 385-395 (1983). | Numdam | MR 713766 | Zbl 0547.65081

[4] F. H. Clarke, Optimization and nonsmooth analysis, Wiley, New York, 1983. | MR 709590 | Zbl 0582.49001

[5] W. Hackbusch Convergence of multi-grid iterations applied to difference equations, Math. Comp. 34, 425-440 (1980). | MR 559194 | Zbl 0422.65020

[6] W. Hackbusch, On the convergence of multi-grid iterations, Beitr. Numer. Math. 9, 213-239 (1981). | Zbl 0465.65054

[7] W. Hackbusch, Multi-grid methods and applications, Springer, Berlin-Heidelberg-New York, 1985. | Zbl 0595.65106

[8] W. Hackbusch, H. D. Mittelmann, On multi-grid methods for variational inequalities, Numer. Math. 42, 65-75 (1983). | MR 1553995 | Zbl 0497.65042

[9] R. H. W. Hoppe, Multi-grid methods for Hamilton-Jacobi-Bellman equations, Numer. Math. 49, 239-254 (1986). | MR 848524 | Zbl 0577.65088

[10] R. H. W. Hoppe, Two-sided approximations for unilateral variational inequalities by multi-grid methods, Optimization 18, 867-881 (1987). | MR 916215 | Zbl 0635.49006

[11] R. H. W. Hoppe, Multi-grid algorithms for variational inequalities, SIAM J.Numer. Anal 24, 1046-1065 (1987). | MR 909064 | Zbl 0628.65046

[12] R. H. W. Hoppe, Multi-grid solutions to the elastic plastic torsion problem in multiply connected domains, Int. J. Numer. Methods Eng. 26, 631-646 (1988). | MR 932352 | Zbl 0703.73091

[13] R. H. W. Hoppe , H. D. Mittelmann, A multi-grid continuation strategy for parameter dependent variational inequalities, J. Comput. Appl. Math. 26, 35-46 (1989). | MR 1007351 | Zbl 0671.65047

[14] D. Kinderlehrer , G. Stampacchia, An introduction to variational inequalities and their applications, Academic Press, New York, 1980. | MR 567696 | Zbl 0457.35001

[15] H. Lanchon, Sur la solution du problème de torsion élastoplastique d'une barre cylindrique de section multiconnexe, C. R. Acad. Sci. Paris, Ser. I 271, 1137-1140 (1970). | MR 273886 | Zbl 0217.55104

[16] P. L. Lions , B. Mercier, Approximation numérique des équations de Hamilton-Jacobi-Bellman, RAIRO Analyse numérique/Numerical analysis 14, 369-393 (1980). | Numdam | MR 596541 | Zbl 0469.65041

[17] J. Mandel, Étude algébrique d'une méthode multigrille pour quelques problèmes de frontière libre, C. R. Acad. Sci. Paris, Ser. I 298, 469-472 (1984). | MR 750748 | Zbl 0543.65044

[18] J. Mandel, A multilevel iterative method for symmetric, positive definite linear complementarity problems, Appl. Math. Optimization 11, 77-95 (1984). | MR 726977 | Zbl 0539.65046

[19] J. J. Moré , W. C. Rheinboldt, On P- and S-functions and related classes of n-dimensional nonlinear mappings, Linear Algebra Appl. 6, 45-68 (1973). | MR 311855 | Zbl 0247.65038