@article{M2AN_1990__24_6_697_0, author = {Degond, Pierre and Markowich, Peter A.}, title = {A quantum-transport model for semiconductors : the Wigner-Poisson problem on a bounded Brillouin zone}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {24}, year = {1990}, pages = {697-709}, mrnumber = {1080715}, zbl = {0742.35046}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_1990__24_6_697_0} }
Degond, Pierre; Markowich, Peter A. A quantum-transport model for semiconductors : the Wigner-Poisson problem on a bounded Brillouin zone. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 24 (1990) pp. 697-709. http://gdmltest.u-ga.fr/item/M2AN_1990__24_6_697_0/
[1] Théorèmes de Trace pour des Espaces des Fonctions de la Neutronique. C.R. Acad. Sc. Paris, tome 300, série l, n°3, 1985. | MR 777741 | Zbl 0648.46028
,[2] Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques. Tome 3, Masson, Paris, 1985. | MR 902802
and ,[3] Regularity of the Moments of the Solution of a Transport Equation. J. Funct. Anal. 88, pp. 110-125, 1988. | MR 923047 | Zbl 0652.47031
, , and ,[4] Semi-Classical Asymptotics in Solid State Physics. Communications in Math. Phys., vol. 116, n°3, pp. 401-415, 1988. | MR 937768 | Zbl 0672.35014
, and ,[5] Introduction to Solid States Physics, J. Wiley and Sons, New York, 1968. | Zbl 0052.45506
,[6] An Analysis of the Quantum Liouville Equation. To appear in ZAMM, 1988. | MR 990011 | Zbl 0682.46047
and ,[7] On the Equivalence of the Schrödinger and the Quantum Liouville Equations. To appear in Math. Meth. In the Appl. Sci., 1988. | MR 1001097 | Zbl 0696.47042
,[8] Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer Verlag, New York-Berlin-Heidelberg-Tokyo, 1983. | MR 710486 | Zbl 0516.47023
,[9] The Wigner Representation of Quantum Mechanics. Sov. Phys. Usp., vol. 26, n°4, pp. 311-327, 1983. | MR 730012
,[10] The Wigner-Poisson Equation in a Crystal, to appear in : Applied Mathematics Letters, 1989. | MR 1003856 | Zbl 0822.58070
, , and ,[11] A Mathematical Derivation of the Wigner-Poisson Problem on a bounded Brillouin Zone from the Schrödinger Equation, manuscript.
, and ,