@article{M2AN_1990__24_2_265_0, author = {Suri, Manil}, title = {The $p$-version of the finite element method for elliptic equations of order $2l$}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {24}, year = {1990}, pages = {265-304}, mrnumber = {1052150}, zbl = {0711.65094}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_1990__24_2_265_0} }
Suri, Manil. The $p$-version of the finite element method for elliptic equations of order $2l$. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 24 (1990) pp. 265-304. http://gdmltest.u-ga.fr/item/M2AN_1990__24_2_265_0/
[1] The pand h-p versions of the finite element method. An overview, Technical Note BN-1101, Institute for Phy. Sci. and Tech., 1989, To appear in Computer Methods in Applied Mechanics and Engineering (1990).
and ,[2] Error estimates for the combined h and p version of the finite element method, Numer. Math., 37 (1981), pp. 252-277. | MR 623044 | Zbl 0487.65058
and ,[3] The optimal convergence rate of the p-version of the finite element method, SIAM J. Numer. Anal., 24 9 No. 4 (1987), pp. 750-776. | MR 899702 | Zbl 0637.65103
and ,[4] 9 The h-p version of the finite element method with quasiuniform meshes, RAIRO Math. Mod. and Numer. Anal., 21, No. 2 (1987), pp. 199-238. | Numdam | MR 896241 | Zbl 0623.65113
and ,[5] Lectures notes on finite element analysis, In préparation.
and ,[6] The p-version of the finite element method, SIAM J. Numer. Anal., 18 (1981), pp.515-545. | MR 615529 | Zbl 0487.65059
, and ,[7] Interpolation Spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1976. | Zbl 0344.46071
and ,[8] Multivariate Splines, SIAM, Philadelphia, 1988. | MR 1033490 | Zbl 0687.41018
,[9] The approximation theory for the p-version of the finite element method, SIAM J. Numer. Anal., 21 (1984), pp. 1180-1207. | MR 765514 | Zbl 0572.65074
,[10] The approximation of solutions of elliptic boundary-values problems via the p-version of the finite element method, SIAM J. Numer. Anal., 23 (1986), pp. 58-77. | MR 821906 | Zbl 0617.65109
,[11] Table of Integrals, Series and Products, Academie Press, London, NewYork, 1965. | MR 197789 | Zbl 0521.33001
and ,[12] The h, p and h-p versions of the finite element method in one dimension, part 1 : the error analysis of the p-versioc ; part 2 : the error analysis of the h and h-p versions; part 3 : the adaptive h-p version, Numer.Math., 49 (1986), pp.577-683. | MR 861522 | Zbl 0614.65089
and ,[13] The h-p version of the finite element method I, Computational Mechanics, 1 (1986), pp. 21-41. | Zbl 0634.73058
and ,[14] The h-p version of the finite element method II, Computational Mechanics, 2 (1986), pp. 203-226. | Zbl 0634.73059
and ,[15] Inequalitie, Cambridge University Press, Cambridge, 1934. | JFM 60.0169.01 | Zbl 0010.10703
, and ,[16] The p-version of the finite element method for problems requiring C1-continuity, SIAM J. Numer. Anal., 22 (1985), pp. 1082-1106. | MR 811185 | Zbl 0602.65086
and ,[17] Boundary-value problems for elliptic equations in domains with conic or corner points, Trans. Moscow Math. Soc, 16 (1967), pp.227-313. | MR 226187 | Zbl 0194.13405
,[18] Boundary-value problems for partial differential equations in non-smooth domains, Russian Math. Surveys, 38 (1983), pp.1-86. | Zbl 0548.35018
and ,[19] A twelfth order theory of transverse bending of transversly isotropic plates, Z. Angew. Math. Mech., 63 (1983), pp.285-289. | Zbl 0535.73039
,[20] Reflections on the theory of elastic plates, Appl. Mech. Rev., 38 (1985), p. 11.
,[21] Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, N.J., 1970. | MR 290095 | Zbl 0207.13501
,[22] Classical Orthogonal Polynomials, Moscow, 1979 (In Russian). | MR 548727 | Zbl 0449.33001
,