@article{M2AN_1990__24_2_197_0, author = {Bonnans, Joseph Fr\'ed\'eric}, title = {Th\'eorie de la p\'enalisation exacte}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {24}, year = {1990}, pages = {197-210}, mrnumber = {1052147}, zbl = {0752.65051}, language = {fr}, url = {http://dml.mathdoc.fr/item/M2AN_1990__24_2_197_0} }
Bonnans, Joseph Frédéric. Théorie de la pénalisation exacte. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 24 (1990) pp. 197-210. http://gdmltest.u-ga.fr/item/M2AN_1990__24_2_197_0/
[1] Sufficient conditions for a globally exact penalty function without convexity, Math. Programming Study 19, 1-15, 1982. | MR 669723 | Zbl 0497.90058
, ,[2] Second order and related extremality conditions in nonlinear programming, J. Optim. Theory Appl. 31, 143-165, 1980. | MR 600379 | Zbl 0416.90062
,[3] Necessary and sufficient conditions for a penalty method to be exact, Math. Programming 9, 87-99, 1975. | MR 384144 | Zbl 0325.90055
,[4] Constrained optimization and Lagrange multiplier methods,Academic Press, New York, 1982. | MR 690767 | Zbl 0572.90067
,[5] Asymptotic stability of the unit stepsize in exact penalty methods,SIAM J. Cont. Optimiz. 27, 631-641, 1989. | MR 993290 | Zbl 0678.90068
,[6] Augmentability and exact penalisability in nonlinear programming under a weak second-order sufficiency condition, in rapport INRIA n° 548, 1986.
,[7] Une extension de la programmation quadratique successive, in « Lecture notes in control and information sciences n° 63 », A. Bensoussan et J. L. Lions ed., 16-31, Springer Verlag, Berlin, 1984. | MR 876712 | Zbl 0559.90081
, ,[8] On the stability of sets defined by a finite number of equalities and inequalities, soumis au J. Opt. Th. Appl. | Zbl 0794.93096
, ,[9] A lower bound for the controlling parameters of the exact penalty functions, Math. Programming 15, 278-290, 1978. | MR 514613 | Zbl 0395.90071
,[10] A new approach to Lagrange multipliers, Math. Oper. Res. 2, 165-174, 1976. | MR 414104 | Zbl 0404.90100
,[11] A global convergent method for nonlinear programming, J. Optim. Theory Appl. 22, 297-309, 1977. | MR 456497 | Zbl 0336.90046
,[12] Exact penalty functions in nonlinear programming, Math. Programming 17, 251-269, 1979. | MR 550845 | Zbl 0424.90057
, ,[13] Optimization theory : the finite dimensional case, J. Wiley & Sons, New York, 1975. | MR 461238 | Zbl 0327.90015
,[14] Necessary and sufficient conditions for a local minimum 1 : A reduction theorem and first order conditions, SIAM J. Control Opt. 17, 245-250, 1979. | MR 525025 | Zbl 0417.49027
,[15] Second order conditions for constrained minima, SIAM J. Applied Math. 15, 641-652, 1967. | MR 216866 | Zbl 0166.15601
,[16] The Fritz-John necessary optimality condition in the presence of equality and inequality constraints, J. Math. Anal. Appl. 7, 37-47, 1967. | MR 207448 | Zbl 0149.16701
, ,[17] A new constraint qualification condition, J. Optim. Th. Appl. 48,459-468, 1986. | MR 833007 | Zbl 0562.90078
,[18] An exact potential method for constrained maxima, SIAM J. Numer. Anal. 2, 299-304, 1969. | MR 245183 | Zbl 0181.46501
,[19] Méthodes numériques dans les problèmes d'extrémum, Mir, Moscou, 1965 (édition française : 1977). | Zbl 0389.65027
, ,[20] Stability theory for Systems of inequalities, part II : differentiable nonlinear Systems, SIAM J. Numerical Analysis 13, 497-513, 1976. | MR 410522 | Zbl 0347.90050
,[21] Convex Analysis, Princeton Univ. Press, Princeton, New Jersey, 1970. | Zbl 0193.18401
,[22] Augmented Lagrange multiplier functions and duality in nonconvex programming, SIAM J. Control 12, 268-285, 1974. | MR 384163 | Zbl 0257.90046
,[23] Exact penalty functions and stability in locally Lipschitz programming, Math. Programming 30, 340-356, 1984. | MR 769237 | Zbl 0587.90083
,