Streamline diffusion methods for the Vlasov-Poisson equation
Asadzadeh, Mohammad
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 24 (1990), p. 177-196 / Harvested from Numdam
Publié le : 1990-01-01
@article{M2AN_1990__24_2_177_0,
     author = {Asadzadeh, Mohammad},
     title = {Streamline diffusion methods for the Vlasov-Poisson equation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {24},
     year = {1990},
     pages = {177-196},
     mrnumber = {1052146},
     zbl = {0703.76106},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_1990__24_2_177_0}
}
Asadzadeh, Mohammad. Streamline diffusion methods for the Vlasov-Poisson equation. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 24 (1990) pp. 177-196. http://gdmltest.u-ga.fr/item/M2AN_1990__24_2_177_0/

[1] A. A. Arsenev, Global existence of a weak solution of Vlasov's System of equations, U.S.S.R. Comput. Math, and Math. Phys., 15 (1975), pp. 131-143. | MR 371322 | Zbl 0302.35009

[2] A. A. Arsenev, Local uniqueness and existence of a classical solution of Vlasov's system of equations, Soviet Math. Dokl., 15 (1974), pp. 1223-1225. | Zbl 0311.76036

[3] C. Bardos and P. Degond, Global existence for the Vlasov Poisson equation in 3 space variables with small initial data. École Polytechnique, Centre de Mathématiques Appliquées, Rapport interne N° 101. | MR 794002

[4] J. T. Beal andA. Majda, Vortex methods I and II, Math. Comp., 32 (1982), pp. 1-27 and pp. 29-52.

[5] P. G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978. | MR 520174 | Zbl 0383.65058

[6] G. H. CottetandP. A. Raviart, Particle methods for the one-dimensional Vlasov-Poisson equation, SIAM J. Numer., Anal., 21 (1984), pp. 52-76. | MR 731212 | Zbl 0549.65084

[7] G. H. Cottet and P. A. Raviart, On particle-in-cell methods for the Vlasov-Poisson equations, TTSP, 15 (1986) pp. 1-31. | MR 831210

[8] J. Denavit, Pitfalls in particle simulations and in numerical solutions of the Vlasov equation, in Proceedings of the Oberwalfach Conference on Mathematical Methods of Plasma physics, ed. by R, Kress and J. Wick, 1980, Band 20, pp. 247-269. | Zbl 0515.76125

[9] J. Dugundji, Topology. Allyn and Bacon, Boston, 1966. | MR 193606 | Zbl 0144.21501

[10] P. Hansbo, Finite Element Procedures for Conduction and Convection Problems, Licenciat thesis, Chalmers Univ. of Technology, Department of Structural Mechanics, 1986.

[11] R. W. Hockney andJ. W. Eastwood, Computer Simulations, using Particles, McGraw-Hill, New York, 1981. | Zbl 0662.76002

[12] T. J. Hughes andA. Brooks, A multidimensional upwind scheme with no crosswind diffusion, in AMD, vol. 34, Finite Element Methods for Convection Dominated Flows, T. J. Hughes (ed.), ASME, New York, 1979. | MR 571679 | Zbl 0423.76067

[13] S. V. Iordanskii, The Cauchy problem for the kinetic equation of plasma, Trudy Mat. Inst. Steklow, 60 (1961), 181-194, English transl. Amer. Math. Soc.Trans. ser. 2, 35 (1964), pp. 351-363. | MR 132278 | Zbl 0127.21902

[14] C. Johnson, Finite element methods for convection-diffusion problems, in Computing Methods in Applied Science and Engineering, R. Glowinski, J. L.Lions (eds.) North-Holland, INRIA, 1982. | MR 784648 | Zbl 0505.76099

[15] C. Johnson and U. Nàvert, An analysis of some finite element methods for advection-diffusion, in Analytical and Numerical Approaches to Asymptotic Problems in Analysis, O. Axelsson, L. Frank and A. Van der Sluis (eds.), North-Holland, Amsterdam, 1981. | MR 605502 | Zbl 0455.76081

[16] C. Johnson,U. Nâvert and J. Pitkâranta, Finite element methods for linear hyperbolic problems, Comput. Methods in Appl. Mech. and Engineering, 45 (1985), pp. 285-312. | MR 759811 | Zbl 0526.76087

[17] C. Johnson and J. Saranen, Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations, Math. Comp., 47 (1986), pp. 1-18. | MR 842120 | Zbl 0609.76020

[18] C. Johnson and A. Szepessy, On the convergence of a finite element method for a nonlinear hyperbolic conservation law, Math. Comp. vol. 49, 1987, pp. 427-444. | MR 906180 | Zbl 0634.65075

[19] J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Paris 1969. | MR 259693 | Zbl 0189.40603

[20] H. Neunzert and J. Wick, The convergence of simulation methods in plasma physics, in Proceedings of the Oberwalfach conference on Mathematical Methods of Plasma Physics, R. Kress and J. Wich (Verlag Peter Lang 1980), Band 20, pp. 272-286. | MR 713653 | Zbl 0563.76125

[21] U. Nàvert, A finite element method for convection-diffusion problems, Thesis,Chalmers Univ. of Technology, Göteborg, 1982.

[22] S. Ukai andT. Okabe, On classical solution in the large in time of two-dimensional Vlasov's équation, Osaka J. of Math., 15 (1978), pp. 245-261. | MR 504289 | Zbl 0405.35002

[23] A. A. Vlasov, Many Particle Theory and its Application to Plasma, State Publishing House for Technical-Theoretical Literature, Moscow and Leningrad, 1950, Gordon and Breach, Science publishers, Library of Congress, 1961. | MR 186291

[24] S. Wollman, The use of a heat operator in an existence theory problem of the Vlasov equation, TTSP, 14 (1985), pp. 567-593. | MR 813498 | Zbl 0595.76126