@article{M2AN_1989__23_4_649_0, author = {Vandeven, Herv\'e}, title = {Compatibilit\'e des espaces discrets pour l'approximation spectrale du probl\`eme de Stokes p\'eriodique/non p\'eriodique}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {23}, year = {1989}, pages = {649-688}, mrnumber = {1025077}, zbl = {0681.76039}, language = {fr}, url = {http://dml.mathdoc.fr/item/M2AN_1989__23_4_649_0} }
Vandeven, Hervé. Compatibilité des espaces discrets pour l'approximation spectrale du problème de Stokes périodique/non périodique. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 23 (1989) pp. 649-688. http://gdmltest.u-ga.fr/item/M2AN_1989__23_4_649_0/
[1] Generalized Inf-Sup Conditionfor Chebyshev Approximation of the Navier-Stokes Equations, à paraître dans SIAM J. Numer. Anal. | Zbl 0666.76055
, & ,[2] Spectral Approximation of the Periodic Nonperiodic Navier-Stokes Equations (to appear in Numer. Math.). | MR 914344 | Zbl 0583.65085
, & ,[3] Calcul de la pression dans la résolution spectrale du problème de Stokes, La Recherche Aérospatiale 1 (1987), 1-21. | MR 904608 | Zbl 0642.76037
, & ,[4] On the Existence, Uniqueness and Approximation of Saddle-Point problems Arising from Lagrange Multipliers, RAIRO Anal. Numér. 8 (1974), 129-151. | Numdam | MR 365287 | Zbl 0338.90047
,[5] Approximation Results for Orthogonal Potynomials in Sobolev Spaces, Math, of Comp. 38 (1981), 67-86. | MR 637287 | Zbl 0567.41008
& ,[6] Spectral Methods in Fluid Dynamics, Springer-Verlag in press (1987). | MR 917480 | Zbl 0658.76001
, , & ,[7] Methods of Numerical Integration, Academic Press (1985). | MR 760629 | Zbl 0537.65020
& ,[8] Finite Element Approximation of the Navier-Stokes Equations, Theory and Algorithms, Springer-Verlag (1986). | MR 851383 | Zbl 0413.65081
& ,[9] A Spectral Collocation Method for the Navier-Stokes Equations, Icase Report n° 84-19 (1984). | Zbl 0573.76036
, & ,