Inertial manifolds of damped semilinear wave equations
Mora, Xavier ; Solà-Morales, Joan
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 23 (1989), p. 489-505 / Harvested from Numdam
Publié le : 1989-01-01
@article{M2AN_1989__23_3_489_0,
     author = {Mora, Xavier and Sol\`a-Morales, Joan},
     title = {Inertial manifolds of damped semilinear wave equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {23},
     year = {1989},
     pages = {489-505},
     mrnumber = {1014487},
     zbl = {0699.35179},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_1989__23_3_489_0}
}
Mora, Xavier; Solà-Morales, Joan. Inertial manifolds of damped semilinear wave equations. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 23 (1989) pp. 489-505. http://gdmltest.u-ga.fr/item/M2AN_1989__23_3_489_0/

[1] S. Angenent, The Morse-Smale property for a semilinear parabolic equation, J. Diff. Eq. 62 (1986), 427-442. | MR 837763 | Zbl 0581.58026

[2] A. V. Babin, M. I. Vishik, Uniform asymptotics of the solutions of singularly perturbed evolution equations (in russian), Uspekhi Mat. Nauk 42(5) (1987),231-232.

[3] S. N. Chow, K. Lu, Invariant manifolds for flows in Banach spaces, J. Diff. Eq. 74 (1988), 285-317. | MR 952900 | Zbl 0691.58034

[4] J. K. Hale, L. T. Magalhâes, W. M. Oliva, An Introduction to Infinite Dimensional Dynamical Systems - Geometric Theory, Springer (1984). | MR 725501 | Zbl 0533.58001

[5] J. K. Hale, G. Raugel, Upper semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Diff. Eq. 73 (1988), 197-214. | MR 943939 | Zbl 0666.35012

[6] P. Hartman, On local homeomorphisms of Euclidean spaces, Bol. Soc, MatMexicana 5 (1960), 220-241. | MR 141856 | Zbl 0127.30202

[7] D. B. Henry, Some infinite-dimensional Morse-Smale Systems defined byparabolic partial differential equations, J. Diff. Eq. 59 (1985), 165-205. | MR 804887 | Zbl 0572.58012

[8] X. Mora, Finite-dimensional attracting invariant manifolds for damped semilinear wave equations, Res. Notes in Math. 155 (1987), 172-183. | MR 907731 | Zbl 0642.35061

[9] X. Mora, J. Solà-Morales, Existence and non-existence of finite-dimensional globally attracting invariant manifolds in semilinear damped wave equations, in « Dynamics of Infinite Dimensional Systems » (edited by S. N. Chow, J. K. Hale), Springer (1987), 187-210. | MR 921912 | Zbl 0642.35062

[10] X. Mora, J. Solà-Morales, The singular limit dynamics of semilinear damped wave equations, J. Diff, Eq. 78 (1989), 262-307. | MR 992148 | Zbl 0699.35177

[11] A. Vanderbauwhede, S. A. Van Gils, Center manifolds and contractionson a scale of Banach spaces, J. Funct. Anal 72 (1987), 209-224. | MR 886811 | Zbl 0621.47050