Approximate inertial manifolds for the pattern formation Cahn-Hilliard equation
Marion, Martine
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 23 (1989), p. 463-488 / Harvested from Numdam
Publié le : 1989-01-01
@article{M2AN_1989__23_3_463_0,
     author = {Marion, Martine},
     title = {Approximate inertial manifolds for the pattern formation Cahn-Hilliard equation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {23},
     year = {1989},
     pages = {463-488},
     mrnumber = {1014486},
     zbl = {0724.65122},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_1989__23_3_463_0}
}
Marion, Martine. Approximate inertial manifolds for the pattern formation Cahn-Hilliard equation. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 23 (1989) pp. 463-488. http://gdmltest.u-ga.fr/item/M2AN_1989__23_3_463_0/

[1] J. W. Cahn, Spinodal decomposition, Trans. Met. Soc. of AIME, 248 (1968),166-180.

[2] J. W. Cahn and J. E. Hilliard, Free energy of a non uniform system I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258 267.

[3] P. Constantin, C. Foias, B. Nicolaenko and R. Temam, Integral manifolds and inertial manifolds for dissipative partial differential equations, J. Math. Pures Appl., 67 (1988). | MR 966192

[4] C. Foias, O. Manley and R. Temam, Sur l'interaction des petits et grands tourbillons dans des écoulements turbulents, C. R. Acad. Sci. Paris, Série I, 305 (1987) 495-500. | MR 916319 | Zbl 0624.76072

and Modelling of the interaction of small and large eddies in turbulent flows, Math. Mod. and Numer. Anal., 22 (1988) 93-114. | Numdam | Zbl 0663.76054

[5] C. Foias, G. R. Sell and R. Temam, Variétés inertielles des équations différentielles dissipatives, C. R. Acad. Sci. Paris, Série I, 301 (1985) 139-141. | MR 801946 | Zbl 0591.35062

and Inertial manifolds for nonlinear evolutionary equations, J. Diff. Equ., 73 (1988), 309-353. | MR 943945 | Zbl 0643.58004

[6] J. S. Langfr, Theory of spinodal decomposition in alloys, Ann. of Phys., 65 (1971), 53-86.

[7] J. Mallet-Paret and G. R. Sell, to appear.

[8] M. Marion, Approximate inertial manifolds for reaction diffusion equations in high space dimension, J. Dynamics and Differential Equations, 1 (1989). | MR 1010967 | Zbl 0702.35127

[9] M. Marion and R. Temam, Nonlinear Galerkin methods, SIAM J. Num. Anal., 26 (1989). | MR 1014878 | Zbl 0683.65083

[10] B. Nicolaenko and B. Scheurer, Low-dimensional behavior of the pattern formation Cahn-Hilliard equation, in Trends in the Theory and Practice of Nonlinear Analysis, V. Lakshmikantham ed., North-Holland, 1985. | MR 817507 | Zbl 0581.35041

[11] B. Nicolaenko, B. Scheurer and R. Temam, Some global dynamical properties of a class of pattern formation equations, Comm. Partial Diff. Equ., to appear (see also IMA preprint n° 381, Minneapolis). | MR 976973 | Zbl 0691.35019

[12] A. Novick-Cohen and L. A. Segel, Nonlinear aspects of the Cahn-Hilliard equation, Physica D, 10 (1984), 277-298. | MR 763473

[13] R. Temam, Variétés inertielles approximatives pour les équations de Navier-Stokes bidimensionnelles, C. R. Acad. Sci. Paris, Série II, 306 (1988), 399-402. | MR 979153 | Zbl 0638.76035

[14] R. Temam, Infinite dimensional dynamical systems in mechanics and physics, Applied Mathematics Series, vol. 68, Springer-Verlag, New York, 1988. | MR 953967 | Zbl 0662.35001