@article{M2AN_1989__23_3_433_0, author = {Ghidaglia, Jean-Michel}, title = {Explicit upper and lower bounds on the number of degrees of freedom for damped and driven cubic Schr\"odinger equations}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {23}, year = {1989}, pages = {433-443}, mrnumber = {1014484}, zbl = {0688.35084}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_1989__23_3_433_0} }
Ghidaglia, J. M. Explicit upper and lower bounds on the number of degrees of freedom for damped and driven cubic Schrödinger equations. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 23 (1989) pp. 433-443. http://gdmltest.u-ga.fr/item/M2AN_1989__23_3_433_0/
[1] Dissipative periodic processes, Bull. Amer. Math. Soc. 77 (1971) 1082-1088. | MR 284682 | Zbl 0274.34061
and ,[2] Global and local chaos in the pumped nonlinear Schrödinger equation, Physical Review Letters 52 (1984) 526-539.
and ,[3] Attractors representing turbulent flows, Memoirs of A.M.S. 53 (1985) n° 314. | MR 776345 | Zbl 0567.35070
, and ,[4] Comportement de dimension finie pour les équations de Schrödinger non linéaires faiblement amorties, C.R. Acad. Sci. Paris, t. 305, Série I (1987) 291-294. | MR 910362 | Zbl 0638.35020
,[5] Finite dimensional behavior for weakly damped driven Schrodinger equations, Ann. Inst. Henri Poincaré, Analyse Non Linéaire 5 (1988) 365-405. | Numdam | MR 963105 | Zbl 0659.35019
,[6] Weakly damped forced Korteweg-de Vries equations behave as a finite dimensional dynamical System in the long time, J. Diff. Equ. 74 (1988) 369-390. | MR 952903 | Zbl 0668.35084
,[7] Dimension of the attractors associated to the Ginzburg-Landau partial differential equation, Physica 28D (1987) 282-304. | MR 914451 | Zbl 0623.58049
and ,[8] Attractors for damped nonlinear hyperbolic equations, J. Math. Pures Appl. 66 (1987) 282-304. | MR 913856
and[9] Low-dimensional chaos in a driven damped nonlinear Schrödinger equation, Physica 21D (1986) 381-393. | MR 862265 | Zbl 0607.35017
and ,[10] Transformation theory of nonlniear differential equations of the second order, Annals of Math. 45 (1944) 723-737. | MR 11505 | Zbl 0061.18910
,Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Soviet Physics JETP 34 (1972) 62-39. | MR 406174
and ,