@article{M2AN_1989__23_2_293_0, author = {Kim, Jong Uhn}, title = {A finite element approximation of three dimensional motion of a Bingham fluid}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {23}, year = {1989}, pages = {293-333}, mrnumber = {1001332}, zbl = {0675.76009}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_1989__23_2_293_0} }
Kim, Jong Uhn. A finite element approximation of three dimensional motion of a Bingham fluid. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 23 (1989) pp. 293-333. http://gdmltest.u-ga.fr/item/M2AN_1989__23_2_293_0/
[1] Analyse numérique de l'écoulement d'un fluide de Bingham, Thèse Université de Paris, 1972.
,[2] Su un problema al contorno relativo al sistema di equazioni di Stokes, Rend Mat Sem. Univ. Padova, 31, 1961, p. 300-340. | Numdam | MR 138894 | Zbl 0116.18002
,[3] The Finite Element Method for Elhptic Problems, North-Holland, Amsterdam-New York-Oxford, 1978. | MR 520174 | Zbl 0383.65058
,[4] Écoulement d'un fluide rigide viscoplastiqueincompressible, C. R. Acad Sc. Paris, T 270, 1970, pp. 58-61. | MR 261154 | Zbl 0194.57604
, and ,[5] Inequalities in Mechanics and Physics, Springer-Verlag, Berlm-Heidelberg-New York, 1976. | MR 521262 | Zbl 0331.35002
and ,[6] Calcul numérique des écoulements des fluides de Bingham et desfluides newtomens incompressibles par la méthode des éléments finis, Thèse, Université de Paris, 1972.
,[7] Elliptic Partial Differential Equations ofsecond order, Springer-Verlag, Berlin-Heidelberg-New York, 1977. | MR 473443 | Zbl 0361.35003
, and ,[8] Finite element Approximation of the Navier-Stokes Equations, Lecture Notes in Math. Vol. 749, Springer-Verlag, 1979. | MR 548867 | Zbl 0413.65081
and ,[9] Sur l'écoulement d'un fluide de Bmgham dans une conduite cylindrique, J. Mech. 13 (4), 1974, p 601-621. | MR 371245 | Zbl 0324.76004
,[10] Numencal Methods for Nonhnear vanational Problems, Springer-Verlag, New York-Berlin-Heidelberg, 1984.
,[11] Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam-New York-Oxford, 1981. | MR 635927 | Zbl 0463.65046
, , and ,[12] Finite Element Approximation of the Nonstationary Navier-Stokes problem, Part II, SIAM J. Num. Anal., 23, No 4, 1986, p 750-777. | MR 849281 | Zbl 0611.76036
, and ,[13] On the initial-boundary value problem for a Bingham fluid in a threedimensional domain, Trans. Amer. Math. Soc., Vol. 304, No 2, 1987, p. 751-770. | MR 911094 | Zbl 0635.35054
,[14] Semi-discretization Method for three dimensional motion of a Bingham fluid, preprint. | Zbl 0706.35113
,[15] Quelques Methodes de Resolution des Problèmes aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris, 1969. | MR 259693 | Zbl 0189.40603
,[16] Une Methode d'Approximation de la Solution des Equations deNavier-Stokes, Bull. Soc. Math. France, Vol. 96, 1968, p. 115-152. | Numdam | MR 237972 | Zbl 0181.18903
,[17] Navier-Stokes Equations, North-Holland, Amsterdam-New York-Oxford, 1984. | MR 769654 | Zbl 0568.35002
,[18] Navier-Stokes Equations and Nonlinear Functional Analysis, SIAM, Philadelphia, 1983. | MR 764933 | Zbl 0833.35110
,[19] Interpolation Theory,Function spaces, Differential Operators, North-Holland, Amsterdam-New-Oxford, 1978. | MR 503903 | Zbl 0387.46032
,