@article{M2AN_1989__23_2_261_0, author = {Chalabi, A. and Vila, J. P.}, title = {On a class of implicit and explicit schemes of Van-Leer type for scalar conservation laws}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {23}, year = {1989}, pages = {261-282}, mrnumber = {1001330}, zbl = {0667.65075}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_1989__23_2_261_0} }
Chalabi, A.; Vila, J. P. On a class of implicit and explicit schemes of Van-Leer type for scalar conservation laws. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 23 (1989) pp. 261-282. http://gdmltest.u-ga.fr/item/M2AN_1989__23_2_261_0/
[1] Flux-Corrected-Transport II Generalisation of the method, J. of Comp. Phys., 18 (1975), pp 248-283. | Zbl 0306.76004
, and ,[2] Stable and entropy condition satisfying approximations for transonic flow calculations, Math. Comp., 34 (1980), pp 45-75. | MR 551290 | Zbl 0438.76051
and ,[3] On a class of high resolution total-variation stable finite difference schemes, SIAM J. of Numer. Anal. 21, 1 (1984), pp. 1-23. | MR 731210 | Zbl 0547.65062
,[4] Convergence of an accurate scheme for first order quasi-linear equations, R.A.I.R.O. Analyse Numérique 15, 2 (1981), pp 151-170. | Numdam | MR 618820 | Zbl 0474.65073
,[5] Numerical viscosity and the entropy condition, Comm. Pure Appl. Math. 32 (1979), pp 797-834. | MR 539160 | Zbl 0405.76021
and ,[6] Some higher order difference schemes enforcing an entropy inequality, Michigan Math. J. 25 (1978), pp. 325-344. | MR 512903 | Zbl 0377.65049
,[7] High resolution schemes and the entropy condition, SIAM J. Number. Anal. 21, 5 (1984), pp. 955-984. | MR 760626 | Zbl 0556.65074
and ,[8] Convergence of generalized MUSCL schemes, SIAM J. Numer. Anal. 22, 5 (1985), pp. 947-961. | MR 799122 | Zbl 0627.35061
,[9] Towards the ultimate conservative scheme-5, J. of Comput. Phys. 32, 1 (1979), pp. 101-136. | MR 1703646
,[10] Sur la théorie et l'approximation numérique des problèmes hyperboliques non lineaire Applications aux équations de Saint-Venant et a la modélisation des avalanches de neige dense, Thesis, Paris 6 (1986).
,[11] High order schemes and entropy condition for nonlinear hyperbolic Systems of conservation laws, Math. of Comp., 50, 181 (1988), 53-73. | MR 917818 | Zbl 0644.65058
,[12] P1-methods for the approximation of the conservation laws, To appear in SIAMNUM.
,