Pointwise convergence of some boundary element methods. Part II
Rannacher, Rolf ; Wendland, Wolfgang L.
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 22 (1988), p. 343-362 / Harvested from Numdam
Publié le : 1988-01-01
@article{M2AN_1988__22_2_343_0,
     author = {Rannacher, Rolf and Wendland, Wolfgang L.},
     title = {Pointwise convergence of some boundary element methods. Part II},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {22},
     year = {1988},
     pages = {343-362},
     mrnumber = {945128},
     zbl = {0648.65092},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_1988__22_2_343_0}
}
Rannacher, Rolf; Wendland, Wolfgang L. Pointwise convergence of some boundary element methods. Part II. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 22 (1988) pp. 343-362. http://gdmltest.u-ga.fr/item/M2AN_1988__22_2_343_0/

[1] M. S. Bou El Seoud, Kollokationsmethode für schwach singuläre Inté-gralgleichungen erster Art. Z. Angew. Math. Mech. 59, T45-T47 (1979). | Zbl 0412.65062

[2] M. S. Agranovich, Spectral properties of diffraction problems. In : The General Method of Natural Vibrations in Diffraction Theory. (Russian)(N. N. Voitovic, K. Z. Katzenellenbaum and A. N. Sivov) Izdat. Nauka, Mos-cow 1977. | MR 484012

[3] M. A. Aleksidze, The Solution of Boundary Value Problems with the Method of Expansion with Respect to Nonorthonormal Functions. Nauka, Moscow 1978 (Russian). | MR 527813

[4] D. N. Arnold and W. L. Wendland, On the asymptotic convergence of collocation methods. Math. Comp. 41, 349-381 (1983). | MR 717691 | Zbl 0541.65075

[5] D. N. Arnold and W. L. Wendland, The convergence of spline collocationfor strongly elliptic equations on curves. Numer. Math. 47, 317-341 (1985). | MR 808553 | Zbl 0592.65077

[6] I. Babuska and A. K. Ziz, Survey lectures on the mathematical foundations of finite element method. In The Mathematical Foundations o f the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz, ed.), pp. 3-359, Academic Press, New York 1972. | MR 421106 | Zbl 0268.65052

[7] M. Costabel and E. Stephan, The normal derivative of the double layer potential on polygons and Galerkin approximation. Applicable Anal. 16, 205-288 (1983). | MR 712733 | Zbl 0508.31003

[8] Costabel and E. Stephan, A direct boundary integral equation method for transmission problems. J. Appl. Anal. Appl. 106, 367-413 (1985). | MR 782799 | Zbl 0597.35021

[9] M. Costabel and W. L. Wendland, Strong ellipticity of boundary integral operators. J. Reine Angew. Math. 372, 34-63 (1986). | MR 863517 | Zbl 0628.35027

[10] P. Filippi, Layer potentials and acoustic diffraction. J. Sound and Vibration 54, 473-500 (1977). | Zbl 0368.76073

[11] J. Frehse and R. Rannacher, Eine L'-Fehlerabschätzung für diskrete Grundlösungen in der Mehtode der finiten Elemente. In : Finite Elemente, Tagungsband Bonn. Math. Schr. 89, 92-114 (1976). | MR 471370 | Zbl 0359.65093

[12] J. Giroire and J. C. Nedelec, Numerical solution of an exterior Neumann problem using a double layer potential. Math. Comp. 32, 973-990 (1978). | MR 495015 | Zbl 0405.65060

[13] T. Ha Duong, A finite element method for the double layer potential solutions of the Neumann exterior problem. Math. Meth. Appl. Sci. 2, 191-208 (1980). | MR 570403 | Zbl 0437.65083

[14] F. K. Hebeker, An integral equation of the first kind for a free boundary value problem of the stationary Stokes equations. Math. Meth. Appl. Sci. 9, 550-575 (1987). | MR 1200365 | Zbl 0656.76031

[15] L. Hormander, Pseudo-differential operators and non-elliptic boundary problems. Annals Math. 83, 129-209 (1966). | MR 233064 | Zbl 0132.07402

[16] H. P. Hoidin, Die Kollokationsmethode angewandt auf die Symmsche Integralgleichung. Doctoral Thesis, EHT Zürich, Switzerland 1983. | Zbl 0579.65142

[17] G. C. Hsia and W. L. Wendland, A finite element method for some integral equations of the first kind. J. Math. Anal. Appl. 58, 449-481 (1977). | MR 461963 | Zbl 0352.45016

[18] G. C. Hsiao and W. L. Wendland, The Aubin-Nitsche lemma for integral equations. Journal of Integral Equations 3, 299-315 (1981). | MR 634453 | Zbl 0478.45004

[19] F. Natterer, Über die punktweise Konvergenz finiter Elemente. Number. Math. 25, 67-77 (1975). | MR 474884 | Zbl 0331.65073

[20] J. C. Nedelec, Approximation des équations intégrales en mécanique et en physique. Lecture Notes, Centre de Math. Appl. Ecole Polytechnique, 91128 Palaiseau, France, 1977.

[21] J. C. Nedelec, Approximation par potentiel de double couche du problème de Neumann extérieur. C. R. Acad. Sci. Paris, Ser. A 286, 616-619 (1978). | MR 477403 | Zbl 0375.65047

[22] J. C. Nedelec, Integral equations with non integrable kernels. Integral Equations Operator Theory 5, 562-572 (1982). | MR 665149 | Zbl 0479.65060

[23] J. A. Nitsche, L -convergence of finite element approximation. Second Conference on Finite Elements, Rennes, France, 1975. | MR 568857 | Zbl 0362.65088

[24] P. M. Prenter, Splines and Variational Methods. John Wiley & Sons, New York 1975. | MR 483270 | Zbl 0344.65044

[25] S. Prössdorf and G. Schmidt, A finite elementcollocation method for singular integral equations. Math. Nachr, 100, 33-60 (1981). | MR 632620 | Zbl 0543.65089

[26] R. Rannacher, Punktweise Konvergenz der Methode der finiten Elemente beim Plattenproblem. Manuscripta Math. 19, 401-416 (1976). | MR 423841 | Zbl 0383.65061

[27] R. Rannacher, On non conforming and mixed finite element methods for plate bending problems. The linear case. R.A.I.R.O. Anal. Numér. 13, 369-387 (1979). | Numdam | MR 555385 | Zbl 0425.35042

[28] R. Rannacher and R. Scott, Some optimal error estimates for piecewise linear finite element approximations. Math. Comp. 38, 437-445 (1982). | MR 645661 | Zbl 0483.65007

[29] R. Rannacher and W. L. Wendland, On the order of pointwise convergence of some boundary element methods. Part I. Operators of negative and zero order. Math. Modelling and Numer. Analysis 19, 65-88 (1985). | Numdam | MR 813689 | Zbl 0579.65147

[30] A. H. Schatz and L. B. Wahlbin, Maximum norm error estimates in the finite element method for Poisson's equation on plante domains with corner. Math. Comp. 32, 73-109 (1978). | MR 502065 | Zbl 0382.65058

[31] G. Schmidt, The convergence of Galerkin and collocation methods with splines for pseudodifferential equations on closed curves. Z. Anal. Anwendungen 3, 371-384 (1984). | MR 780180 | Zbl 0551.65077

[32] R. Scott, Optimal L -estimatees for the finite element method on irregular meshes. Math. Comp. 30, 681-697 (1976). | MR 436617 | Zbl 0349.65060

[33] E. Stephan and W. L. Wendland, Remarks to Galerkin and least squares methods with finite elements for general elliptic problems. Manuscripta Geodaetica 1, 93-123 (1976) and Springer Lecture Notes in Math. 564, 461-471 (1976). | MR 520343 | Zbl 0353.65067

[34] G. Strang, Approximation in the finite element method. Num. Math. 19 (1972). | MR 305547 | Zbl 0221.65174

[35] M. E. Taylor, Pseudodifferential Operators. Princeton University Press,Princeton, New Jersey 1981. | MR 618463 | Zbl 0453.47026

[36] F. Treves, Pseudodifferential Operators. Plenum Press, New York, London 1980. | MR 597144

[37] J. O. Watson, Advanced implementation of the boundary element method fortwo- and three-dimensional elastostatics. In : Developments in Boundary Element Methods. I. Banerjee and R. Butterfield (eds.), Appl. Sciences Publ. LTD, London, 31-63 (1979). | Zbl 0451.73075

[38] W. L. Wendland, Boundary element methods and their asymptotic conver-gence. . In : Theoretical Acoustics and Numerical techniques. P. Filippi (éd.), CISM Courses and Lectures No.277, Springer-Verlag, Wien, New York, 135-216 (1983). | MR 762829 | Zbl 0618.65109