Modelling of the interaction of small and large eddies in two dimensional turbulent flows
Foias, C. ; Manley, O. ; Temam, R.
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 22 (1988), p. 93-118 / Harvested from Numdam
@article{M2AN_1988__22_1_93_0,
     author = {Foia\c s, Ciprian and Manley, O. and Temam, Roger},
     title = {Modelling of the interaction of small and large eddies in two dimensional turbulent flows},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {22},
     year = {1988},
     pages = {93-118},
     mrnumber = {934703},
     zbl = {0663.76054},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_1988__22_1_93_0}
}
Foias, C.; Manley, O.; Temam, R. Modelling of the interaction of small and large eddies in two dimensional turbulent flows. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 22 (1988) pp. 93-118. http://gdmltest.u-ga.fr/item/M2AN_1988__22_1_93_0/

[1] H. Brézis and T. Gallouet, « Nonlinear Schroedinger evolution equation», Nonlinear Analysis Theory Methods and Applications, Vol.4, 1980, p. 677. | MR 582536 | Zbl 0451.35023

[2] C. Foias, O. Manley and R. Temam, « Sur l'interaction des petits et grands tourbillons dans des écoulements turbulents», C.R. Ac. Sc.Paris, 305, Série I, 1987; pp. 497-500. | MR 916319 | Zbl 0624.76072

[3] C. Foias, O. Manley and R. Temam, to appear. | MR 1205478

[4] C. Foias, O. Manley, R. Temam and Y. Treve, « Asymptotic analysis of the Navier-Stokes equations», Physica 6D, 1983, pp. 157-188. | MR 732571 | Zbl 0584.35007

[5] C. Foias, B. Nicolaenko, G. Sell and R. Temam, « Variétés inertielles pour l'équation de Kuramoto-Sivashinsky»,C. R. Ac. Sc. Paris, 301, Série I, 1985pp. 285-288 and « Inertial Manifolds for the Kuramoto-Sivashinsky équations and an estimate of their lowest dimension», J. Math. Pure AppL, 1988. | MR 803219 | Zbl 0591.35063

[6] C. Foias and G. Prodi, « Sur le comportement global des solutions non stationnaires des équations de Navier-Stokes en dimension 2», Rend. Sem. Mat. Padova, Vol. 39, 1967, pp. 1-34. | Numdam | MR 223716 | Zbl 0176.54103

[7] C. Foias and R. Temam, « Some analytic and geometrie properties of the solutions of the Navier-Stokes equations», J. Math. Pure Appl, Vol.58, 1979, pp. 339-368. | MR 544257 | Zbl 0454.35073

[8] C. Foias and R. Temam, Finite parameter approximative structures of actual flows», in Nonlinear Problems : Present and Future, A. R. Bishop, D. K. Campbell, B. Nicolaenko (eds.), North Holland, Amsterdam, 1982. | MR 675639 | Zbl 0493.76026

[9] A. N. Kolmogorov, C. R. Ac. Sc URSS, Vol.30, 1941, p. 301; Vol. 31, 1941, p. 538; Vol. 32, 1941, p. 16.

[10] R. H. Kraichnan, « Inertial ranges in two dimensional turbulence», Phys. Fluids, Vol. 10, 1967, pp. 1417-1423.

[11] G. Métivier, « Valeurs propres d'opérateurs définis sur la restriction de systèmes variationnels à des sous-espaces», J. Math. Pure Appl., Vol. 57, 1978, pp. 133-156. | MR 505900 | Zbl 0328.35029

[12] R. Temam, Navier-Stokes Equations, 3rd Revised Ed., North Holland, Amsterdam, 1984. | Zbl 0568.35002

[13] R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, NSF/CBMS Regional Conferences Series in Appl. Math., SIAM, Philadelphia, 1983. | MR 764933 | Zbl 0833.35110

[14] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, 1988. | MR 953967 | Zbl 0662.35001

[15] E. Titi, Article in preparation.

[16] J. H. Wells and L. R. Williams, Imbeddings and Extensions in Analysis, Springer-Verlag, Heidelberg, New York | Zbl 0324.46034