@article{M2AN_1988__22_1_159_0, author = {Lovera, Oscar Mario and Santos, Juan Enrique}, title = {Numerical methods for a model for wave propagation in composite anisotropic media}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {22}, year = {1988}, pages = {159-176}, mrnumber = {934705}, zbl = {0663.76094}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_1988__22_1_159_0} }
Lovera, Oscar Mario; Santos, Juan Enrique. Numerical methods for a model for wave propagation in composite anisotropic media. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 22 (1988) pp. 159-176. http://gdmltest.u-ga.fr/item/M2AN_1988__22_1_159_0/
[1] Two families of Mixed Finite Elements for Second Order Elliptic Problems, Numerische Mathematik, vol. 47 (1985), pp. 217.235. | MR 799685 | Zbl 0599.65072
, , and ,[2] Mixed Finite Elements for Second Order Elliptic Problems in Three Variables, Numerische Mathematik. 51 (1987), pp. 237-250. | MR 890035 | Zbl 0631.65107
, , and ,[3] Theory of Propargation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range, Journal of the Acoustical Society of America, vol. 28, Number 2 (1956), pp. 168-179. | MR 134056
,[4] The Elastic Coefficients of the Theory of Consolidation, Journal of Applied Mechanics, Vol. 24, Trans. Asme., vol. 79, (1957), pp. 594-601. | MR 92472
and ,[5] Mechanics of Deformation and Acoustic Propagation in Porous Media, Journal of Applied Physics, vol. 33, Number 4 (1962), pp. 1482-1498. | MR 152238 | Zbl 0104.21401
,[6] Global Estimates for Mixed Methods for Second Order Elliptic Equations, Mathematics of Computation, vol. 44 (1985), pp. 39-52. | MR 771029 | Zbl 0624.65109
and ,[7] Inequalities in Mechanics and Physics, Springer-Verlag, Berlin, 1976. | MR 521262 | Zbl 0331.35002
and ,[8] Existence Theorems in Elasticity-Boundary Value Problems of Elasticity with Unilateral Constrains, Encyclopedia of Physics, S. Flüge, Ed., vol. 22, n° 1, 1988 vol.VIa/2: Mechanics of Solids II, C. Truesdell Ed., Springer-Verlag, Berlin, 1972, pp. 347-424.
,[9] Finite Element Approximation of the Navier- Stokes Equations, Springer-Verlag, Berlin, 1981. | MR 548867 | Zbl 0441.65081
and ,[10]A Treatise on the Mathematical Theory of Elasticity, Dover, New York, Fourth Edition. | JFM 53.0752.01 | Zbl 0063.03651
,[11] Boundary Conditions for a Fluid-Saturated Porous Solid, Geophysics, 52 (1987), pp. 174-178.
,[12] Finite Dynamic Model for Infinite Media, Journal Eng. Mech. Division, Proc. Amer. Soc. Civil Eng., 95 (1969), pp. 859-877.
and ,[13] Mixed Finite Elements in , Numerische Mathematik, 35 (1980), pp. 325-341. | MR 592160 | Zbl 0419.65069
,[14] On Korn's Second Inequality, R.A.I.R.O. Anal. Numer., 15 (1981), pp. 237-248. | Numdam | MR 631678 | Zbl 0467.35019
,[15] A Mixed Finite Element Method for 2en Order Elliptic Problems, Mathematical Aspects of the Finite Element Method, Lecture Notes in Mathematics 606, Springer-Verlag, Berlin, 1977. | MR 483555 | Zbl 0362.65089
and ,[16] Finite Element Methods for the Simulation of Ware Propagation in Two-dimensional Inhomogeneous Elastic Media, Calcolo, 22 (1985), pp. 249-317. | MR 859084 | Zbl 0592.73039
,[17] Elastic Wave Propagatin in Fluid-Saturated Porous Media. Part I. The Existence and Uniqueness Theorems, Modélisation Mathématique et Analyse Numérique, vol. 20 (1986), pp. 113-128. | Numdam | MR 844519 | Zbl 0616.76104
,[18] Elastic Wave Propagation in Fluid-Saturated Porous Media. Part II. The Galerkin Procedures, Modélisation Mathématique et Analyse Numérique, vol. 20 1986(), pp. 129-139. | Numdam | MR 844520 | Zbl 0616.76105
and ,[19] Finite Element Methods for a Composite Model in Elastodynamics, to appear in SIAM J. Numer. Anal. | MR 942205 | Zbl 0684.73034
, , and ,[20] Sur l'Analyse Numérique des Méthodes d'Éléments Finis Hybrides et Mixtes, Thèse, Université P. et M. Curie, Paris, 1977.
,