@article{M2AN_1987__21_4_641_0, author = {L\'eon, Jean-Fran\c cois}, title = {Existence et unicit\'e de la solution positive de l'\'equation TFW sans r\'epulsion \'electronique}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {21}, year = {1987}, pages = {641-654}, mrnumber = {921831}, zbl = {0636.35025}, language = {fr}, url = {http://dml.mathdoc.fr/item/M2AN_1987__21_4_641_0} }
Léon, Jean-François. Existence et unicité de la solution positive de l'équation TFW sans répulsion électronique. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 21 (1987) pp. 641-654. http://gdmltest.u-ga.fr/item/M2AN_1987__21_4_641_0/
[1] Dual Variational methods in Critical point Theory and applications. J. of Funct. Anal. 14, 349, 381 (1973). | MR 370183 | Zbl 0273.49063
,[2] The Thomas-Fermi-Theory as Result of a Strong-Coupling-Limit. Commun. Math. Phys. 47, 215-219 (1976). | MR 406156
,[3] The TFW theory of atoms and molecules. Commun. in Math. Phys. 79, 167, 180 (1981). | MR 612246 | Zbl 0478.49035
,[4] Non linear scalar field equation part I, II. Arch. for Rat. Mec. and Anal. 82, n° 4, 313, 345 et 347, 375 (1983). | Zbl 0533.35029
,[5] Mécanique Quantique ed. Mir (1971, Moscou). | Zbl 0148.43806
and ,[6] Thomas-Fermi and related theories of atoms and molecules. Rev. of Mod. Phys. 53, n° 4, p.1 October 1981. | MR 629207 | Zbl 1114.81336
,[7] Analysis of TFW equation for an infinite atom without electron repulsion. Comm. Math. Phys. 85, p. 15 (1982). | MR 667764 | Zbl 0514.35074
,[8] Some remarks on Hartree equation. Nonlinear Anal. T.M.A. 5 (1981) 1245-1256. | MR 636734 | Zbl 0472.35074
,