Meilleure approximation en norme vectorielle et théorie de la localisation
Durier, Roland
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 21 (1987), p. 605-626 / Harvested from Numdam
Publié le : 1987-01-01
@article{M2AN_1987__21_4_605_0,
     author = {Durier, Roland},
     title = {Meilleure approximation en norme vectorielle et th\'eorie de la localisation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {21},
     year = {1987},
     pages = {605-626},
     mrnumber = {921829},
     zbl = {0649.41019},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/M2AN_1987__21_4_605_0}
}
Durier, Roland. Meilleure approximation en norme vectorielle et théorie de la localisation. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 21 (1987) pp. 605-626. http://gdmltest.u-ga.fr/item/M2AN_1987__21_4_605_0/

[1] J. P. Aubin, L'analyse non linéaire et ses motivations économiques, Masson (1984). | MR 754997 | Zbl 0551.90001

[2] G. R. Bitran, L. Magnanti, The structure of admissible points with respect to cone dominance, Journal Optimization Theory and Applications, 29 (1979) 573-614. | MR 552107 | Zbl 0389.52021

[3] L. G. Chalmet, R. L. Francis and A. Kolen, Finding efficient solutions for rectilinear distance location problem efficiently, European Journal of Operational Research, 6 (1986), 117-124. | MR 626427 | Zbl 0451.90037

[4] R. Durier, On efficient points and Fermat-Weber problem, Working Paper, University of Dijon (1984).

[5] R. Durier, Weighting factor results in vector optimization, Working Paper, University of Dijon (1985). | Zbl 0628.90075

[6] R. Durier, C. Michelot, Geometrical properties of the Fermat-Weber problem, European Journal of Operational Research, 20 (1985), 332-343. | MR 800909 | Zbl 0564.90013

[7] R. Durier, C. Michelot, Sets of efficient points in a normed space, Journal of Mathematical Analysis and Applications, à paraître. | Zbl 0605.49020

[8] A. M. Geoffrion, Proper efficiency and the theory of vector maximization, Journal of Mathematical Analysis and Applications, 22 (1968), 618-630. | MR 229453 | Zbl 0181.22806

[9] P. Hansen, J. Perreur, J. F. Thisse, Location theory, dominance and convexity : some further results, Operations Research, 28 (1980), 1241-1250. | Zbl 0449.90027

[10] D. T. Luc, Structure of the efficient point set, Proceedings of the American Mathematical Society, 95 (1985), 433-440. | MR 806083 | Zbl 0596.49007

[11] H. Moulin, F. Fogelman-Soulie, La convexité dans les mathématiques de la décision, Hermann (1979).

[12] P. H. Naccache, Connectedness of the set of nondominated outcomes in multicriteria optimization, Journal of Optimization Theory and Applications, 25 (1978), 459-467. | MR 508110 | Zbl 0363.90108

[13] F. Robert, Étude et utilisation de normes vectoriellesen analyse numérique linéaire, Thèse de Doctorat ès Sciences, Grenoble (1968).

[14] F. Robert, Meilleure approximation en norme vectorielle et minima de Pareto, Modélisation Mathématique et Analyse Numérique, 19 (1985), 89-110. | Numdam | MR 813690 | Zbl 0558.41035

[15] R. T. Rockafellar, Convex Analysis, Princeton University Press (1970). | MR 274683 | Zbl 0193.18401

[16] J. F. Thisse, J. E. Ward, R. E. Wendell, Some properties of location problems with block and round norms, Opérations Research, 32 (1984), 1309-1327. | MR 775261 | Zbl 0557.90023

[17] J. E. Ward, R. E. Wendell, Characterizing efficient points in location problem under the one-infinity norm, Locational analysis of public facilities, ed. J. F. Thisse et H. G. Zoller, North Holland, Studies in mathematical and managed economies, 31, (1983), 413-429.

[18] R. E. Wendell, A. P. Hurter, Location theory, dominance and convexity,Operations research, 21 (1973), 314-321. | MR 351409 | Zbl 0265.90040

[19] R. E. Wendell, A. P. Hurter, T. J. Lowe, Efficient points in location problems, AIEE Transactions, 9 (1973), 238-246. | MR 472073

[20] R. Wernsdorff, On the connectedness of the set of efficient points in convex optimization problems with multiple or random objectives, Mathematische Operationsforschung und Statistik, ser. Optimization, 15 (1984), 379-387. | MR 756330 | Zbl 0553.90074

[21] D. J. White, Optimality and efficiency, John Wiley and Sons (1982). | MR 693459 | Zbl 0561.90087