Efficient rectangular mixed finite elements in two and three space variables
Brezzi, Franco ; Douglas, Jim Jr. ; Fortin, Michel ; Marini, L. Donatella
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 21 (1987), p. 581-604 / Harvested from Numdam
@article{M2AN_1987__21_4_581_0,
     author = {Brezzi, Franco and Douglas, Jim Jr. and Fortin, Michel and Marini, L. Donatella},
     title = {Efficient rectangular mixed finite elements in two and three space variables},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {21},
     year = {1987},
     pages = {581-604},
     mrnumber = {921828},
     zbl = {0689.65065},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_1987__21_4_581_0}
}
Brezzi, Franco; Douglas, Jim Jr.; Fortin, Michel; Marini, L. Donatella. Efficient rectangular mixed finite elements in two and three space variables. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 21 (1987) pp. 581-604. http://gdmltest.u-ga.fr/item/M2AN_1987__21_4_581_0/

[1] D. N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods : implementation, postprocessing, and error estimates, R. A. I. R. O. Mathematical Modelling and Numerical Analysis 19 (1985), pp. 7-32. | Numdam | MR 813687 | Zbl 0567.65078

[2] I. Babuska, The finite element with Lagrangian multipliers, Numer. Math. 20 (1973), pp. 179-192. | MR 359352 | Zbl 0258.65108

[3] J. H. Bramble and A. H. Schatz, Higher order local acuracy by averaging in the finite element method, Math. of Comp. 31 (1977), pp. 94-111. | MR 431744 | Zbl 0353.65064

[4] J. H. Bramble and A. H. Schatz, Estimates for spline projections, R.A.I.R.O. Anal. numér. 10 (1976), pp. 5-37. | Numdam | MR 436620 | Zbl 0343.65045

[5] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers, R.A.I.R.O. Anal. numér. R2 (1974), pp. 129-151. | Numdam | MR 365287 | Zbl 0338.90047

[6] F. Brezzi, J. Jr. Douglas, R. Duran and M. Fortin, Mixed finite elements for second order elliptic problems in three variables, to appear in Numer. Math. | MR 890035 | Zbl 0631.65107

[7] F. Brezzi, J. Jr. Douglas and L. D. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math. 47 (1985), pp. 217-235. | MR 799685 | Zbl 0599.65072

[8] F. Brezzi, J. Jr. Douglas and L. D. Marini, Variable degree mixed methods for second order elliptic problems, Matematica Aplicada e Computacional 4 (1985), pp. 19-34. | MR 808322 | Zbl 0592.65073

[9] D. C. Brown, Alternating-direction iterative schemes for mixed finite element methods for second order elliptic problems, Thesis, University of Chicago, 1982.

[10] J. Jr. Douglas, Alternating direction methods for three space variables, Numer. Math. 4 (1962), pp. 42-65. | MR 136083 | Zbl 0104.35001

[11] J. Jr. Douglas, R. Duran and P. Pietra, Formulation of alternating-direction iterative methods for mixed methods in three space, to appear in the proceedings of the Symposium Internacional de Analisis Numérico, Madrid, September 1985. | MR 899777 | Zbl 0609.65071

[12] J. Jr. Douglas, R. Duran and P. Pietra, Alternating-direction iteration for mixed finite element methods, to appear in Computing Methods in Applied Science and Engineering VII (R. Glowinski and J. L. Lions, eds.), North-Holland, 1986. | MR 905295 | Zbl 0677.65105

[13] J. Jr. Douglas and F. Milner, Interior and superconvergence estimates for mixed methods for second order elliptic problems, R.A.I.R.O. Mathematical Modelling and Numerical Analysis 19 (1985), pp. 397-428. | Numdam | MR 807324 | Zbl 0613.65110

[14] J. Jr. Douglas and P. Pietra, A description of some alternating-direction iterative techniques for mixed finite element methods, to appear in the proceedings of a SIAM/SEG/SPE conference, Houston, January 1985.

[15] J. Jr. Douglas and P. Pietra, private communication.

[16] J. Jr. Douglas and , Global estimates for mixed methods for second order elliptic equations, Math. of Comp. 44 (1985), pp. 39-52. | MR 771029 | Zbl 0624.65109

[17] M. Fortin, An analysis of the convergence of mixed finite element methods, R.A.I.R.O. Anal, numér. 11 (1977), pp. 341-354. | Numdam | MR 464543 | Zbl 0373.65055

[18] B. X. Fraeijs De Veubeke, Displacement and equilibrium models in the finite element method, Stress Analysis (O. C. Zienkiewicz and G. Holister, eds.), Wiley, New York, 1965.

[19] B. X. Fraeijs De Veubeke, Stress function approach, World Congress on the Finite Element Method in Structural Mechanics, Bournemouth, 1975.

[20] Handbook of Mathematical Functions (M. Abromowitz and I. Stegun, eds.), Chapter 22 (O. W. Hochstrasser).

[21] P. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical Aspects of the Finite Element Method, Lecture Notes in Mathematics 606, Springer, Berlin-Heidelberg-New York, 1977. | MR 483555 | Zbl 0362.65089

[22] J. M. Thomas, Sur l'analyse numérique des méthodes d'éléments finis hybrides et mixtes, Thèse, Université P.-et-M. Curie, Paris, 1977.