@article{M2AN_1987__21_3_361_0, author = {Added, St\'ephane and Added, H\'el\`ene}, title = {Asymptotic behaviour for the solution of the compressible Navier-Stokes equation, when the compressibility goes to zero}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {21}, year = {1987}, pages = {361-404}, mrnumber = {908237}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_1987__21_3_361_0} }
Added, Stéphane; Added, Hélène. Asymptotic behaviour for the solution of the compressible Navier-Stokes equation, when the compressibility goes to zero. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 21 (1987) pp. 361-404. http://gdmltest.u-ga.fr/item/M2AN_1987__21_3_361_0/
[1] Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, C.P.A.M. 34 (1981) pp.481-524. | MR 615627 | Zbl 0476.76068
and ,[2] Compressible and incompressible fluids, C.P.A.M. 35 (1982) pp. 629-651. | MR 668409 | Zbl 0478.76091
and ,[3] The initial valueproblem for the equations of motion of viscous and heat conductive gases, J. Math. Kyoto Univ. 20-1 (1980) pp. 67-104. | MR 564670 | Zbl 0429.76040
and ,[4] Limite des équations d'un fluide compressible lorsque la compressibilité tend vers 0, Pré-pub. Math. Univ. Paris Nord, Fasc. n° 37.
,[5] The evolution Navier-Stokes equations, North-Holland (1977) pp. 427-443.
,[6] Compressible fluid flow and Systems of conservation laws in several space variables, Univ. of California, Berkeley. | Zbl 0537.76001
,[7] Equations of Langmuir's turbulence and non linear chrödinger équation, smoothness and approximation, Pré-pub. Math. Univ. Paris Nord. | Zbl 0655.76044
and ,[8] Global existence for non linear wave equations, C.P.A.M. 33 (1980) pp. 43-101. | MR 544044 | Zbl 0405.35056
,[9] Partial differential equations, Holt, Rinehart and Winston (1969). | MR 445088 | Zbl 0224.35002
,[10] Non stationary flows of viscous and idéal fluids in R3, Functional Analysis 9 (1972), pp. 296-305. | MR 481652 | Zbl 0229.76018
,