Mathematical formulation of fluid-structure interaction problems
Boujot, Jacqueline
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 21 (1987), p. 239-260 / Harvested from Numdam
@article{M2AN_1987__21_2_239_0,
     author = {Boujot, Jacqueline},
     title = {Mathematical formulation of fluid-structure interaction problems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {21},
     year = {1987},
     pages = {239-260},
     mrnumber = {896242},
     zbl = {0617.73052},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_1987__21_2_239_0}
}
Boujot, Jacqueline. Mathematical formulation of fluid-structure interaction problems. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 21 (1987) pp. 239-260. http://gdmltest.u-ga.fr/item/M2AN_1987__21_2_239_0/

[1] S Agmon, A Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I. Comm. Pure Appl. Math., 12, 1959, pp. 623-627. | MR 125307 | Zbl 0093.10401

[2] J. J. Angelini and J Boujot, Application des Équations Intégrales à l'étude d'un problème couplé en milieu incompressible. La Recherche Aérospatiale, 1982, n°2, pp. 143-144.

[3] J. Boujot, Interaction fluide-structure en régime transitoire. La Recherche Aérospatiale, 1984 n° 3, pp. 203-209. | MR 765072 | Zbl 0594.76071

[4] J. Boujot, Étude d'une famille de problèmes d'évolution du second ordre, correspondant à divers modèles de couplage fluide-structure en régime transitoire. C.R. Acad. Sc. Paris, Série I, t. 301, 1985, pp. 391-394. | MR 808635 | Zbl 0586.76026

[5] R. Courant and D. Hilbert, Mathematical methods of Physics, Interscience Publishers, New York, 1953. | MR 65391 | Zbl 0051.28802

[6] J. M. Giudaglia and R. Temam, Remarks on the regularity of the solutions of second order evolution equations and their attractors. To appear.

[7] J. L. Lions and E. Magenes, Nonhomogeneous boundary value problems and applications. Springer Verlag, New York, 1972. | Zbl 0223.35039

[8] J. Mathieu, Simulation des interactions fluide-structure en théorie des grands déplacements. Thèse de 3e Cycle, Université Paris-Sud Orsay, 1985.

[9] J. C. Nedelec, Approximation des Équations Intégrales en Mécanique et en Physique. École Polytechnique, 1977.

[10] R. Temam, Mathematical problems in Plasticity. Gauthier-Villars, New York, 1985. | MR 711964