@article{M2AN_1986__20_4_571_0, author = {Gogny, D. and Lions, Pierre-Louis}, title = {Hartree-Fock theory in nuclear physics}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {20}, year = {1986}, pages = {571-637}, mrnumber = {877058}, zbl = {0607.35078}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_1986__20_4_571_0} }
Gogny, D.; Lions, P. L. Hartree-Fock theory in nuclear physics. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 20 (1986) pp. 571-637. http://gdmltest.u-ga.fr/item/M2AN_1986__20_4_571_0/
[1] | MR 446076 | Zbl 0366.76083
and , Arch. Rat. Mech. Anal, 65 (1977), pp. 249-261.[2]
and , Astrophys J., 165 (1971), pp. 79-82.[3] | Zbl 0090.45401
, and , Phys. Rev., 10P (1957), p. 1175.[4] | MR 406156
, Comm. Math. Phys., 47 (1976), pp. 215-219.[5] | MR 695536 | Zbl 0556.35046
and , Arch. Rat. Mech. Anal., 82 (1983), pp. 313-346, and pp. 347-375.[6]
, and , Nucl. Phys. A. , 428 (1984), pp. 236-296.[7]
, Ann. Rev. Nucl. Sci., 11 (1971), pp. 93-244.[8]
, Phys. Rev. , 167 (1968), p. 879.[9] | MR 145923 | Zbl 0127.45701
and , Nucl. Phys., 39 (1962), p. 95.[10]
, Sov. Phys. JETP, 7 (1958), p 41 , Sov. Phys. Usp., 2 (1959), p. 236., Usp. Fiz. Nauk. 67 (1959), p. 549.[11]
, Mat. Fys. Medd. Dan. Vid. Setsh., 26 (1952).[12] | MR 677997 | Zbl 0513.35007
and , Comm. Math. Phys., 85 (1982), pp. 549-561.[13] | MR 333489 | Zbl 0249.35029
, Arch. Rat. Mech. Anal., 46 (1972), pp. 81-95.[14]
and , Phys. Rev. C., 21 (1980), pp. 1568-1593.[15] Cours à l'IN2 P3, École Juliot Curie de Physique Nucleaire, 1983.
,[16]
, Nukleonika, 24 (1979), pp. 19-66.[17] | JFM 56.1313.08
, Z. Phys., 61 (1930), pp. 126-148.[18] Numdam | MR 533219
and , J. Funct. Anal., 32 (1979), pp. 1-72, Ann. I. H. P. A. 28 (1978), pp. 287-316. |[19] | MR 533902 | Zbl 0397.35013
and , Mat. Zeit., C. R. Acad. Sci. Paris 288 (1979), pp. 683-686.[20]
and . Ann. I. H. P. Anal. Non. Lin. (1985).[21]
and , Phys. Rev. C., 27 (1981), p. 2317.[22] | MR 128374 | Zbl 0099.23006
, Nuov. Cim., 19 (1961), p. 154.[23]
, Proc. Cambridge Philos. Soc., 24 (1928), pp. 89-132.[24]
, Phys. Lett., 12 (1964), p. 132.[25]
, and , Phys. Rev. C. 3, 31 (1985), p. 762.[26] | MR 601336
, Phys. Rev. Lett. 46 (1981), pp. 457-459 and 47 (1981), p.68.[27] | Zbl 1114.81336
, Rev. Mod. Phys., 53 (1981), pp. 603-641.[28] | MR 471785 | Zbl 0369.35022
, Studies in Appl. Math., 57 (1977), pp. 93-105.[29]
, In Proc. Int. Cong. Math. Vancouver, 1974, pp. 383-386.[30] | MR 452286
and , Comm. Math. Phys., 53 (1977), pp. 185-194.[31] | MR 428944 | Zbl 0938.81568
and , Adv. Math., 23 (1977), pp. 22-116.[32] | MR 658560 | Zbl 0488.35072
, C. R. Acad Sci Paris, 294 (1982), pp. 377-379.[33] Numdam | MR 778974
, Ann. I. H. P. Anal. Nonlin, 1 (1984), pp. 109-135 and pp. 223-283. C. R. Acad. Sci. Paris, 294 (1982), pp. 261-264. |[34]
Riv. Math. Iberoamericana, 1 (1985), pp. 145-201 and pp. 45-121, C. R. Acad. Sci. Paris, 296 (1983), pp. 645-648.[35] Nonlinear Variational problems», Pitman, London, 1985. | MR 807536
, In «[36] | MR 615163 | Zbl 0464.49019
, J. Funct. Anal. 41 (1981), pp. 236-275.[37] | MR 683027 | Zbl 0501.46032
, J. Funct. Anal., 49 (1982), pp. 315-334.[38] | MR 636734 | Zbl 0472.35074
, Nonlinear Anal. T. M. A., 5 (1981), pp. 1245-1256.[39] Nonlinear Problems Present and Future, Eds A. Bishop, D. Campell, B. Nicolaenko, North-Holland, Amsterdam, 1983. | MR 675623
, In[40] | MR 591299 | Zbl 0453.47042
, Nonlinear Anal T. M. A., 4 (1980), pp. 1063-1073.[41]
, Physics To Day (1985).[42]
, Rev Modern Phys., 54 (1982), pp. 913-1015.[43]
, Phys Rev. C 1, 4 (1970), p. 1260.[44]
and , Ann. Rev. Nucl. Part. Sci., 28 (1978), pp. 523-596.[45] | Zbl 0042.23202
, Phys. Rec., 81 (1951), pp. 385-390.[46] | MR 454365 | Zbl 0356.35028
, Comm. Math. Phys., 55 (1977), pp. 149-162.[47] | MR 121197 | Zbl 0097.43603
, Phys. Rev., 122 (1961), p. 1012.[48]
and , Phys. Rev. C., 9 (1972), p. 626-647.