@article{M2AN_1986__20_3_461_0,
author = {Ishihara, Kazuo},
title = {Finite element solutions for radiation cooling problems with nonlinear boundary conditions},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
volume = {20},
year = {1986},
pages = {461-477},
mrnumber = {862787},
zbl = {0618.65100},
language = {en},
url = {http://dml.mathdoc.fr/item/M2AN_1986__20_3_461_0}
}
Ishihara, Kazuo. Finite element solutions for radiation cooling problems with nonlinear boundary conditions. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 20 (1986) pp. 461-477. http://gdmltest.u-ga.fr/item/M2AN_1986__20_3_461_0/
[1] , Sobolev SpacesSobolev Spaces, Academic Press, New York, 1975. | MR 450957 | Zbl 0314.46030
[2] and , On a conservative upwind finite element scheme forconvective diffusion equations, RAIRO Anal. Numér. 1515 (1981), 3-25. | Numdam | MR 610595 | Zbl 0466.76090
[3] , Discrete maximum principle for finite-difference operators, Aequationes Math. 44 (1970), 338-352. | MR 292317 | Zbl 0198.14601
[4] , The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. | MR 520174 | Zbl 0383.65058
[5] and , Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Engrg. 2 (1973), 17-31. | MR 375802 | Zbl 0251.65069
[6] , Generalized radiation cooling of a convex solid, J. Math. Anal. Appl. 35 (1971), 503-511. | MR 284092 | Zbl 0218.35036
[7] , Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, New Jersey, 1964. | MR 181836 | Zbl 0144.34903
[8] , Some remarks on finite element analysis of time-dependent field problems, Theory and Practice in Finite Element Structural Analysis (ed. by Yamada, and Gallagher, R. H.), 91-106, Univ. of Tokyo Press, Tokyo, 1973. | Zbl 0373.65047
[9] , On finite element schemes of the Dirichlet problem for a system of nonlinear elliptic equations, Numer. Funct. Anal. Optim. 3 (1981), 105-136. | MR 619817 | Zbl 0469.65071
[10] , Finite element approximations applied to the nonlinear boundary value problem , Publ. Res. Inst. Math. Sci. 18 (1982), 17-34. | MR 660820 | Zbl 0492.65062
[11] , Monotone explicit iterations of the finite element approximations for the nonlinear boundary value problem, Numer. Math. 43 (1984), 419-437. | MR 738386 | Zbl 0531.65061
[12] , Explicit iterations with monotonicity for finite element approximations applied to a system of nonlinear elliptic equations, J. Approx. Theory 44 (1985), 241-252. | MR 794607 | Zbl 0599.65074
[13] and , Heat transfer between solids and gases under nonlinear boundary conditions, Quart. Appl. Math. 9 (1951), 163-184. | MR 42596 | Zbl 0043.10001
[14] , Temperature distribution in a convex solid with nonlinear radiation boundary condition, J. Math. Mech. 15 (1966), 899-908. | MR 197047 | Zbl 0145.36004
[15] , Numerical Analysis, Academic Press, New-York, 1972. | MR 403154 | Zbl 0248.65001
[16] and , Maximum Principles in Differential Equations, Prentice-Hall, Englewood Cliffs, New Jersey, 1967. | MR 219861 | Zbl 0153.13602
[17] , Hilbert Space Methods for Partial Differential Equations, Pitman Press, London, 1977. | MR 477394 | Zbl 0364.35001
[18] , Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble) 15 (1965), 189-258. | Numdam | MR 192177 | Zbl 0151.15401
[19] and , The change in solution due to change in domain, Proc. Sympos. Pure Math. on Partial Differential Equations, 23 (1973), 199-205. | MR 337023 | Zbl 0259.35020
[20] , Uniform convergence of the upwind finite element approximation for semilinear parabolic problems, J. Math. Kyoto Univ. 18 (1978), 327-351. | MR 495024 | Zbl 0391.65038
[21] , Polygonal domain approximation in Dirichlet's problem, J. Inst. Math. Appl. 11 (1973), 33-44. | MR 349044 | Zbl 0246.35023
[22] , Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, New Jersey, 1962. | MR 158502 | Zbl 0133.08602